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Abstract

Since the 1980’s, with first commercial confocal microscopes (CLSM),
Fluorescence Recovery after Photobleaching (FRAP) technique is very
useful in studies of protein dynamics in live cells. FRAP is based on
measurement of the fluorescence intensity of either fluorescently tagged
or autofluorescent molecules in a region of interest (ROI) in response to a
change provided by an external stimulus, so-called bleach. Earlier work
has derived analytical result for some geometries of ROI and bleach spot,
and for some additional assumptions, turning the quantification of the
transport and binding rate parameters into the curve fitting problem.
Nevertheless, the underlying process of redistribution of fluorescent
molecules can be modelled and solve numerically and the parameter
estimation turns into an optimization problem, by minimizing the
disparity between simulated and experimentally measured data. We follow
this framework, however there are unexpected pitfalls residing mainly in
the ill-posedness of our problem, see e.g. [1].
Based on experimental data different parameter estimation methods
provide different results. Performing the error analysis, we assess the
parameter uncertainty, i.e. we provide the parameter standard errors
(based on previously determined parameter sensitivities) for each
respective method.



Real data from spatio-temporal FRAP measurement

Time series of Fluorescence intensity (averaged along the shorter axis, in
arb. units) vs. Position along the longer axis [µm]. Experimental data
from FRAP experiment with unicellular red algae Porphyridium cruentum

describing the fl. particle mobility (due to the diffusion) on the membrane.



Simulation of 1D diffusion (the diffusion coefficient p is known!)
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3D plot of synthetic data: Fluorescence intensity y(x , t) vs. Position and
time. Fluorescence is normalized, y(x , t) ∈ [0, 10]. Spatial coordinate
x ∈ [0, 1], space step is 0.1. Time t ∈ [0, 2], time step is 0.1.



Formulation of IBVP - Initial Boundary Value Problem (with parameter p)

Assuming local homogeneity, isotropy (diffusion coefficient D within the
ROI - domain Ω is space-invariant), an unrestricted supply of unbleached
particles outside of ROI, the following diffusion equation describes the
unbleached particle concentration y(r , t): ∂y

∂t
−∇ · (D∇y) = 0.

Furthermore, for the special geometry residing in one-dimensional
simplification getting y as a function of dimensionless spatial coordinate
x , time τ , and re-scaled diffusion coefficient p:

∂y

∂τ
− p

∂2y

∂x2
= 0 , (1)

where x := r
L
, L is a characteristic length, τ := t

T
, T is a constant with

some characteristic value, and p := D T
L2 .

The initial condition (IC) and Dirichlet boundary conditions (BC) are:

y(x , τ0) = f (x), x ∈ [0, 1], (2)

y(0, τ) = g0(τ), y(1, τ) = g1(τ), τ ≥ τ0. (3)



Parameter estimation and ill-posedness of inverse problems

Denoting by p = (p1, . . . , pm) the parameter vector, the inverse problem
can be formulated as a system of non-linear equations:

F (p) = zδ, F = G ◦ S . (4)

Here, F = G ◦ S represents the parameter-to-output map, defined as the
concatenation of the IBVP solution operator S onto the solution vector y
of the underlying system (1)-(3), i.e. S(p) = yi ,j and the observation
operator G that evaluates y on certain space-points i ∈ {1, . . . , n} and
time-points j ∈ {1, . . . ,m} where the experimental observations (also
referred to as the model output) are taken, i.e. G(yi ,j) = z(τj ).
Due to noisy data, model imperfections, and ill-posedness of our problem,
system (4) is replaced by a nonlinear least squares regularization problem

‖ zδ − F (p) ‖2 +α ‖ p − p0 ‖2→ min p,p0>0 (5)

where the positive regularization parameter α enforces stable dependency
of pδα (the solution to (5)) on the noisy data zδ and p0 represents an
a-priory guess subjected to the minimization.



Results for synthetic data: The role of regularization parameter α on the
solution smoothness
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Error Analysis: The tool for parameter uncertainty assessment

Our error analysis exploits the properties of sensitivity matrix χ = ∂z
∂p

,
i.e., the Jacobian matrix of the output, being evaluated at p0:

χjk(p0) =
∂z(τj ; p)

∂pk
|p=p0 , 1 ≤ j ≤ m, 1 ≤ k ≤ m. (6)

The statistical model for the observation process is following:

zδj = z(τj ; p0) + εj . (7)

Assuming E [εj ] = 0, var(εj) = σ2
0 < ∞, cov(εj , εk) = 0 whenever

j 6= k , we have E [zδj ] = z(τj ; p0), var(zδj ) = σ2
0 . The standard errors of

parameters pk used to quantify uncertainty in the estimation are

SEk(p
δ
α) = σ̂

√

[χ(pδα)
Tχ(pδα)]

−1
kk , 1 ≤ k ≤ m. (8)

where σ̂2 is an approximation of σ2
0 and χTχ is the Fisher information

matrix (FIM).
The propagation of uncertainty from the observation process to the
estimated parameter vector is induced by ε = (ε1, . . . , εm)

T in equation

p ≈ p0 +
[

χ(p0)
Tχ(p0)

]

−1
χ(p0)

T ε. (9)



Three FRAP methods: Standard errors and parameter sensitivities

1 C. W. Moulineaux et al., Nature (1997), for the infinite domain
(r ∈ R) and initial Gaussian bleaching profile, obtained the solution

y(r , t) of diffusion equation (1) as y(r , t) =
y0,0r0√
r02+8Dt

exp −2r2

r02+8Dt
.

The time evolution of maximum depth y(0, t), i.e. the single
observed data point z(t), and the Fisher information matrix
FIM = χTχ are given by:

zM(t) =
y0,0r0√
r02+8Dt

, FIMM =
∑m

j=1

[

4y0,0r0tj
(r02+8Dtj )3/2

]2

.

Accordingly to (8): SE (D̂) = σ0/
√
FIMM .

2 J. Ellenberg et al., J. Cell Biol. (1997) receives excellent results for
SE (D̂), however...

3 FD approximation of IBVP & Tikhonov regularization based method,
see [1], provides the general framework for all kind of IC and BC,
and is able to detect the time evolution of parameter pk as well.

Papáček Š., Kaňa R., and Matonoha C.

Estimation of diffusivity of phycobilisomes on thylakoid membrane

based on spatio-temporal FRAP images. Mathematical and
Computer Modelling (2012), doi:10.1016/j.mcm.2011.12.029.



Standard errors and parameter sensitivities for [1] and CWM method
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Standard errors and parameter sensitivities χk(p0) were calculated
numerically by FD approximation of IBVP and using (6). SE (D̂) and
FIM for CWM method will be discussed personally...


