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OP VaVpI, by the Grant Agency of the Czech Republic through the research grants No. 206/09/P094 and 201/09/1957,
the institutional research plan No. AV0Z10300504, Institutional Research Concepts AVOZ50200510 and MSM6007665808,

and by the project Algatech (CZ.1.05/2.1.00/03.0110).
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FRAP

FRAP (Fluorescence Recovery After Photobleaching) technique allows
detection of diffusivity of autofluorescence compound like proteins (e.g.
phycobiliproteins) and also other non-fluorescence compound that are
fluorescently tagged (e.g. green fluorescence proteins - GFP).

This method is based on application of short, intense laser irradiation
(the so called bleach) to a small target region (Region Of Interest - ROI)
of the cell that causes irreversible loss in fluorescence in this area without
any damage in intracellular structures. After the ”bleach” (or
”bleaching”), the observed recovery in fluorescence in the ”bleached
area” reflects diffusion of fluorescence compounds from the area outside
the bleach.
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Model development

During a FRAP experiment, a biological sample is briefly exposed to
intense laser illumination to bleach a target region of a specified
geometry. Assuming (i) local homogeneity, (ii) isotropy, (iii) an
unrestricted supply of unbleached particles outside of the target region Ω,
the recovery (due to the diffusion characterized by D) of unbleached
particle concentration C as a function of spatial coordinate ~r and time t

is modelled as follows:

∂C

∂t
−∇ · (D∇C ) = R(C ) , (1)

where R(C ) is a reaction term.
Initial (IC) and time varying Dirichlet boundary conditions (BC) are:

C (t0) = C0(~r , t0) in Ω, C (t) = g(~r , t) in ∂Ω× [t0,T ]. (2)

For a linear bleach spot perpendicular to a longer axis, and assuming D is
in domain Ω the scalar space-independent diffusion coefficient, we have

∂C

∂t
− D

∂2C

∂r2
= R(C ) . (3)
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One dimensional re-scaled reaction-diffusion model

After introducing the dimensionless variables x , p, τ, y by

x :=
r

L
, p :=

D

D0
, τ :=

D0

L2
t, y :=

C

Cpre

,

where L is the length of our specimen in direction perpendicular to bleach
spot, D0 is a constant with some characteristic value (unit: m2s−1), Cpre

is a pre-bleach concentration of C , and R(C ) = −kSC , we have the
dimensionless diffusion-reaction equation in one dimension (for x ∈ [0, 1]):

∂y

∂τ
− p

∂2y

∂x2
= −

kSL
2

D0
y . (4)

Initial and time varying Dirichlet boundary conditions are

y(x , τ0) = y0 for x ∈ [0, 1], y(0, τ) = g0(τ), y(1, τ) = g1(τ). (5)

We can also assume the flow on the boundary (Neumann BC):

∂y

∂x
(0, τ) = h0(τ),

∂y

∂x
(1, τ) = h1(τ), τ ≥ τ0. (6)
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Experimental data

Based on FRAP experiments, we have a matrix of m pre-bleach and
M + 1 post-bleach experimental values

yexp(xi , τj), i = 0 . . .N , j = −m . . .M ,

with x0 = 0 and xN = 1, where

yexp(xi , τ0), i = 0 . . .N , is a vector for the IC

yexp(0, τj), j = 1 . . .M , is a vector of the left BC

yexp(1, τj), j = 1 . . .M , is a vector of the right BC

Recall that the re-scaled space steplength ∆h = 1
N+1 (H = L

N+1 ).
Let the time interval between two measurements be T (in seconds).
The re-scaled dimensionless time interval is then τM = T D0

L2 .
The re-scaled time steplength ∆τ we further define as ∆τ := τM

κt
, where

the value of κt ∈ N concerns the numerical scheme.
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Experimental values
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Determination of diffusivity as a single parameter estimation problem

We construct an objective function J representing the disparity between
the experimental and simulated time-varying concentration profiles, and
then within a suitable method we look for such a value p minimizing J:

Jj =
N∑

i=1

[yexp(xi , τj)− ysim(xi , τj)]
2 + α (p − pest)

2, j = 1 . . .M (7)

where ysim(xi , τj) are the simulated values resulting from the solution of
PDE (4) with the initial and boundary conditions (5), α ≥ 0 is a
regularization parameter, and pest is an estimation of our result (we deal
with the ill-posed problem). For the sake of clarity, we further neglect
the reaction term, i.e. we put kS = 0 in (4).

We have used a suitable optimization method from the UFO system
which generates a sequence of iterates p(0), p(1), . . . , p∗.
Recall that we can also take both sums for i and j in (7) together:

min J =
∑

j=1...M

Jj

Š. Papáček, R. Kaňa, C. Matonoha Estimation of Diffusivity



8

Numerical schemes

Problem (4)-(5) for simulated data y(xi , τj) ≡ ysim(xi , τj) was solved
numerically using the finite difference scheme for uniformly distributed
nodes with the space steplength ∆h = 1/(κsN) and the variable time
steplength ∆τ :

1 The explicit scheme of order ∆τ +∆h2:

yi ,j = βyi−1,j−1 + (1− 2β)yi ,j−1 + βyi+1,j−1

2 The Crank-Nicholson implicit scheme of order ∆τ2 +∆h2:

−
β

2
yi−1,j+(1+β)yi ,j−

β

2
yi+1,j =

β

2
yi−1,j−1+(1−β)yi ,j−1+

β

2
yi+1,j−1

Here β := ∆τ

∆h2
p and yi ,j ≡ y(xi , τj) are the computed values in nodes.

Recall that for the explicit scheme β ≤ 1/2 must hold.
In order to get from the (j − 1)-th time row to the j-th, we need to
perform at least

κt =
TD0

L2∆τ

substeps.
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The nodes
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Implementation

From the biological point of view, we take into account pre-bleach data.
In this case, we compute the average value of them and post-bleach data
are divided by this average pre-bleach. We have

”
new“ experimental

values yexp .

Because of the ill-posedness of the problem, we apply the
regularization technique based on minimization of function (7) taking
α > 0.

As we are interested in the
”
hollow“ in the experimental data, we can

only work with data xA to xB for A > 0 and B < N instead of x0 to xN .

When considering each j-th time column separately, see (7), we use hot
starts when approaching the next time column, so the initial p(0) is equal
to p∗ from the previous time column.
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Gauss: XINIT = 1D0, XMAX=1D-2

α = 0, α = 0.01, α = 0.1, α = 1
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Gauss: XINIT = 1D0, XMAX=1D3

α = 0, α = 0.01, α = 0.1, α = 1
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Conclusion

Our method improves on other models by accounting for
experimentally measured post-bleaching fluorescence profiles and
time-dependent boundary conditions, and can include also a reaction
term to account for the low level bleaching during scanning and the
time varying fluorescence signal.

Finding a biologically reliable optimal solution p is quite a difficult
task. We are looking to improve our method either by an adequate
implementation of a suitable regularization technique (based on the
assessment of the measurement noise) and a more robust
optimization procedure.

For the previously known diffusion coefficient (the synthetic data
were simulated by the random walk model) our program computes
correct results. Furthemore, we determined the diffusivities for the
real FRAP data with the red algae Porphyridium cruentum. The
range of result 10−14m2s−1 is in agreement with reference values.

Š. Papáček, R. Kaňa, C. Matonoha Estimation of Diffusivity


