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Introduction

In some cases, we have only intervals [ai , bi ] of possible values of xi
instead of the actual value xi . Example:

Measured values usually include some measurement error with
known upper bounds.

Then, the actual value of xi is unknown and we only know that its value
is located within the interval determined by the upper bound of
measurement error.

Therefore, we should work rather with these intervals than with these
single values. Consequently, possible values of their average and their
variance are also intervals. While the computation of lower and upper
bounds for average of interval data is straightforward, the computation of
lower and upper bounds for their variance is significantly complicated.

We present some theoretical results concerning the solution of
maximization problem and introduce preliminary algorithms for solving
both problems which use their special structure.
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The problem

We consider n intervals Ii = [ai , bi ] and define

K = I1 ⊗ I2 ⊗ I2 ⊗ · · · ⊗ In. (1)

We would like to find:

xmin = argmin
x∈K

1

n
F (x), (2)

xmax = argmax
x∈K

1

n
F (x), (3)

where F (x) =

n
∑

i=1

(xi − x)2 with x =
1

n

n
∑

i=1

xi .
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Function F

Function F can be written in the following forms:

F (x) =

n
∑

i=1

(xi − x)2 =

n
∑

i=1

x2i −
(x1 + · · ·+ xn)

2

n
=

n
∑

i=1

x2i − nx2

=
1

2n





n
∑

i ,j=1

(xi − xj)
2



 =
1

n





∑

j<i

(xi − xj)
2




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Matrix representation

Define

Y =











x1 − x1 x1 − x2 . . . x1 − xn
x1 − x2 x2 − x2 . . . x2 − xn

...
...

. . .
...

x1 − xn x2 − xn . . . xn − xn











Matrix Y is symmetric, indefinite, zero diagonal,
∑n

i=1 λi = 0. Now

F (x) =
1

2n

n
∑

i ,j=1

(xi − xj )
2
=

1

2n
‖Y‖2F =

1

2n
tr(Y2)

=
1

2n

n
∑

i=1

µi =
1

2n

n
∑

i=1

λ2
i =

1

2n

n
∑

i=1

σ2
i

where

µi are eigenvalues of Y2

λi are eigenvalues of Y

σi are singular values of Y
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The problem

In this contribution we give some theoretical results of problems (2)-(3)
and outline the algorithms for seeking the solutions. We will consider the
following structure of problems (2)-(3):

xmin = arg min
x∈Rn

F (x), (4)

subject to xi ∈ [ai , bi ], i = 1 . . . n

xmax = arg max
x∈Rn

F (x), (5)

subject to xi ∈ [ai , bi ], i = 1 . . . n

The following quantities are used throughout the paper:

ci =
ai + bi

2
, di = bi − ai > 0, i = 1 . . . n,

pa =
a1 + · · ·+ an

n
, pb =

b1 + · · ·+ bn
n

.
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Properties

There are several apparent properties:

If ∩i Ii 6= ∅ then there exist either one or infinitely many solutions
to (4). All elements of the solution are the same and belong to ∩i Ii .
Consequently, F = 0.

The solution to (5) lies on the vertex of K .

It holds

n
∑

i=1

(xi − x)2 <

n
∑

i=1

(xi − d)2 for any d 6= x.
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Basic optimization method

Both problems (4)-(5) are classical optimization problems with simple
bounds that can be solved by a suitable optimization method.
Basic optimization method is an iteration process starting from an initial
point x (0) and generating a sequence of points x (1), x (2), . . . leading to a
solution x∗ such that

x (k+1) = x (k) + α(k)d (k),

where

d (k) is a direction vector – is determined on the basis of values

x (j), F (x (j)), F ′(x (j)), F ′′(x (j)), 0 ≤ j ≤ k ,

α(k) > 0 is a step-length – is determined on the basis of behavior of
function F in the neighborhood of x (k).

We use a suitable optimization method (line-search or trust-region
method) from the so-called UFO system

http://www.cs.cas.cz/luksan/ufo.html
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Making use of a special structure

Unfortunately, our problem is dense (the Hessian matrix of F is dense),
so it is hard to solve problems (4)-(5) for large n by a general
optimization method. We will make use of a special structure of the
problem and introduce algorithms that take into consideration this
structure (the solution satisfies certain properties).

The problem of minimization (4) is simple and no significant difficulties
arise. We do not need know anything special about the solution and the
following algorithm works well on the test problems.
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Algorithm 1

Algorithm 1 Solving problem (4).

1 Set

pa = øai , pb = øbi , p =
pa + pb

2
, Amax = max{ai}, Bmin = min{bi}

and si = 0 ∀i (indicator of the solution x∗
i
: 0 - not found, 1 - found).

2 If Amax ≤ Bmin, then the solution x∗i ∀i is an arbitrary number in
[Amax,Bmin] and F = 0.

3 For i = 1 . . . n such that si = 0 perform:
1 If p ∈ [ai , bi ], then xi = p, otherwise xi = ai or bi according to if

p is closer to pa or pb.
2 We reduce the intervals [ai , bi ] so that [ai , bi ] ⊆ [pa, pb].
3 If [ai , bi ] ∩ [pa, pb] = ∅, then x∗

i = xi and si = 1.

4 Set

polda = pa, poldb = pb, pa = øai , pb = øbi , p =
pa + pb

2

5 If max{|pa − polda |, |pb − poldb |} > ε, go to Step 3.
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It is harder

The problem of maximization (5) is much harder than the problem of
minimization (4), so we will focus on the theoretical analysis and find
useful information concerning the solution.

The solution x∗ to (5) lies on the vertex of K , see the second apparent
property above or Lemma 1 below. Thus in the subsequent analysis we
assume that x∗ has components x∗i equal to either ai or bi . First, we will
study what the solution must satisfy.
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About the components x∗i

Lemma 1

The solution x∗ to (5) lies on the vertex of K , i.e. x∗ = (x∗1 . . . x∗n ),
where x∗i = ai or x∗i = bi .

Lemma 2

The solution x∗ to (5) has the property that there exists at least one i
and at least one j , i 6= j such that x∗i = ai and x∗j = bj .

Lemma 3

Let x ∈ Rn and x be the average value of points x1 . . . xn. Suppose
that there exists j such that xj = x. Then F (x) < F (xτ ), where

xτ = (x1 . . . xj−1, xj + τ, xj+1 . . . xn)

for τ 6= 0. In other words, no component x∗i of the solution x∗ is equal
to the average value x∗.
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About the difference F (x)− F (y)

The following analysis concerns the differences between function values.
The first lemma stands for the most general case.

Lemma 4

Let x , y ∈ Rn be arbitrary. Denote pxy the average value of all points
xi , yi , i = 1 . . . n, and define the following sets:

Naa = {i : xi = ai , yi = ai},

Nab = {i : xi = ai , yi = bi},

Nba = {i : xi = bi , yi = ai},

Nbb = {i : xi = bi , yi = bi}.

It is evident that Naa ∪ Nab ∪ Nba ∪ Nbb = {1 . . .n}. Then it holds

F (x) − F (y) = 2

[

∑

i∈Nba

di(ci − pxy )−
∑

i∈Nab

di (ci − pxy )

]
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About the difference F ({xi}i 6=j , bj)− F ({xi}i 6=j , aj)

Suppose that we have some combination of points x1 . . . xn. Now we fix
some j and ask if the function value is larger for xj = aj or xj = bj .

Lemma 5

Let x ∈ Rn and take an arbitrary index j . Denote pxi the average value
of points {xi}i 6=j . Then

F ({xi}i 6=j , bj)− F ({xi}i 6=j , aj) = 2
n− 1

n
dj(cj − pxi )

The consequence is that:

F ({xi}i 6=j , bj) > F ({xi}i 6=j , aj) ⇔ cj > pxi ,

F ({xi}i 6=j , bj) < F ({xi}i 6=j , aj) ⇔ cj < pxi ,

F ({xi}i 6=j , bj) = F ({xi}i 6=j , aj) ⇔ cj = pxi ,
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Special case of previous lemma

A special case of the previous lemma is the following result.

Lemma 6

Consider sets {ai}, {bi} and let j be an arbitrary index. Then

F ({ai}i 6=j , bj)− F ({ai}) = 2dj(cj − pa −
1

2n
dj),

F ({bi}i 6=j , aj)− F ({bi}) = 2dj(pb − cj −
1

2n
dj).

Both numbers on the right-hand side are equal if and only if
cj = p := pa+pb

2 .
In general, if we compare both numbers on the right-hand side, we will
derive relations

F ({ai}i 6=j , bj)− F ({ai}) > F ({bi}i 6=j , aj)− F ({bi}) ⇔ cj > p

F ({ai}i 6=j , bj)− F ({ai}) < F ({bi}i 6=j , aj)− F ({bi}) ⇔ cj < p

F ({ai}i 6=j , bj)− F ({ai}) = F ({bi}i 6=j , aj)− F ({bi}) ⇔ cj = p
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Consequence of previous result

Lemma 7

As the solution x∗ must contain at least one ai and at least one bj , the
consequence is that if we consider the initial iteration x (0), then

aj can be replaced with bj if and only if pa < cj −
1
2ndj ;

bj can be replaced with aj if and only if pb > cj +
1
2ndj .
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Comparison of F (a) and F (b)

The following lemma gives the comparison of function values on each
side of the set K .

Lemma 8

It holds

F (a1, . . . , an) < F (b1, . . . , bn) ⇔ p <
∑

(cidi )∑
di

,

F (a1, . . . , an) > F (b1, . . . , bn) ⇔ p >
∑

(cidi )∑
di

,

F (a1, . . . , an) = F (b1, . . . , bn) ⇔ p =
∑

(cidi )∑
di

,

Lemma 9

Let j be an arbitrary index. Then

F ({ai}i 6=j , bj) < F ({bi}i 6=j , aj) ⇔ (cj − p)dj <
∑

i 6=j [(ci − p)di ]

F ({ai}i 6=j , bj) > F ({bi}i 6=j , aj) ⇔ (cj − p)dj >
∑

i 6=j [(ci − p)di ]

F ({ai}i 6=j , bj) = F ({bi}i 6=j , aj) ⇔ (cj − p)dj =
∑

i 6=j [(ci − p)di ]
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Quadratic function approach

Another approach to determine previous results consists in that we fix a
set of points {xi}i 6=j and study the function values on [aj , bj ]. Denote

xj = aj + τj(bj − aj) = aj + τjdj , τj ∈ [0, 1].

Then the quadratic function f (τj ) satisfies

f (τj) ≡ F ({xi}i 6=j , xj ) =
∑

i 6=j

x2i + (aj + τjdj)
2 −

1

n





∑

i 6=j

xi + aj + τjdj





2

f ′(τj) = 2dj(aj + τjdj)−
2

n
dj





∑

i 6=j

xi + aj + τjdj





f ′(τj ) = 0 ⇔ τ∗j =
pxi − aj
bj − aj

f ′′(τj) = 2
n − 1

n
d2
j ⇒ f (τ∗j ) = min f (τj )
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General difference F ({xi}i 6=j , bj)− F ({xi}i 6=j , aj)

From here we obtain properties mentioned above, that is

τ∗j < 0.5 ⇔ cj > pxi ⇔ F ({xi}i 6=j , bj) > F ({xi}i 6=j , aj)

τ∗j > 0.5 ⇔ cj < pxi ⇔ F ({xi}i 6=j , bj) < F ({xi}i 6=j , aj)

τ∗j = 0.5 ⇔ cj = pxi ⇔ F ({xi}i 6=j , bj) = F ({xi}i 6=j , aj)

Remark

Function f (τj ) satisfies

f (τj) =
n − 1

n
d2
j τ

2
j

− 2
n − 1

n
dj(pxi − aj)τj

+
∑

i 6=j

x2i + a2j −
1

n





∑

i 6=j

xi + aj





2
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Determination of some components of the solution

We can immediately determine some components of the solution. Denote

paj = the average value of {ai}i 6=j , j = 1 . . . n

pbj = the average value of {bi}i 6=j , j = 1 . . . n

pα = the average value of
{

{ai}i 6=k , bk
}

, where k is such that
dk = mini{di}.

pβ = the average value of
{

{bi}i 6=k , ak
}

, where k is such that
dk = mini{di}.

Then it holds for j = 1 . . . n

If cj < max{paj , pα}, then x∗j = aj .

If cj > min{pbj , pβ}, then x∗j = bj .

If cj ∈ Pj = [max{paj , pα},min{pbj , pβ}], an iteration process must
be performed.
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Algorithm 2

Algorithm 2 Solving problem (5) – preliminary algorithm.

1 Set

pa = øai , pb = øbi , p =
pa + pb

2
, ci =

ai + bi
2

, di = bi − ai ,

paj = ø{ai}i 6=j , pbj = ø{bi}i 6=j , j = 1 . . . n,

pα = ø
{

{ai}i 6=k , bk
}

, where k = argmin
i
{di},

pβ = ø
{

{bi}i 6=k , ak
}

, where k = argmin
i
{di},

and si = 0 ∀i (indicator of the solution x∗
i
: 0 - not found, 1 - found).

2 For i = 1 . . . n such that si = 0 perform:
1 If ci < max{pa

j , pα}, then x∗
i = ai and si = 1.

If ci > min{pb
j , pβ}, then x∗

i = bi and si = 1.
2 If ci < p, then xi = ai and bi = min{bi , pa}.

If ci > p, then xi = bi and ai = max{ai , pb}.
If p = ci and [pa, pb] ⊆ [ai , bi ], then bi = pa or ai = pb.

3 Set pold = p and compute new pa, pb, p.

4 If |p − pold | > ε, go to Step 2.
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Example 1

Example 1 Let n = 3 and

[ai , bi ] = [−3, 1], [−9/2, 3], [−1, 1/2]

It holds that

c1 = −1, d1 = 4, pa1 = −11/4, pb1 = 7/4

c2 = −3/4, d2 = 15/2, pa2 = −2, pb2 = 3/4

c3 = −1/4, d3 = 3/2, pa3 = −15/4, pb3 = 2

pα = −7/3, pβ = 1, p = −2/3

We do not have immediately any component of the solution because
cj ∈ Pj ∀j . The solution satisfies

x∗ = (−3, 3, −1), øx∗i = −1/3, F (x∗) = 6.2

and the point just on the other sides of all interval satisfies

x̃ = (1, −9/2, 1/2), øx̃i = −1, F (x̃) = 6.16

The function values are located close together which makes hard for the
algorithm to identify the right solution.
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Example 2

Example 2 Demonstration of making use of a special structure of our
problem (the components of the solution lies on the edges of intervals).

We have the set of test intervals [ai , bi ] with n = 40.

If we use a general optimization method, we obtain the results

NIT = 41 and F = 4709.79625

If we use Algorithm 2, we obtain

NIT = 2 and F = 4911.99902
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Conclusion

We have presented some theoretical results and preliminary
algorithms for computing variance of interval data described in the
introduction.

Although the problem can be solved using various optimization
methods combining direction vectors and the step-length, developing
a special algorithm taking into consideration a special structure of
the problem is more advantageous.

Concerning the maximization problem, where finding a solution is
much harder than in case of the minimization problem, the solution
satisfies useful properties which allow us to identify directly some
components of the solution.
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Main tasks

The main task is to develop more robust algorithm to identify the right
solution and to deal with the unpleasant facts:

what to do when cj ∈ Pj?

the component x∗i does not depend on the relation between ci and p
(it can hold both ci < p and ci > p)

both min{ai} and max{bi} need not be components of the solution
(but at least one of them must be - which one?)

using the same sequence of several different intervals does not
generate the same sequence of the solution (is there any regularity
for the solution?)
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