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Pod Vodárenskou věž́ı 2, 182 07 Prague 8, Czech Republic

SIAM Conference on Optimization
Darmstadtium Conference Center, May 16-19, 2011
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A general problem

A general nonlinear programming problem with complementarity
constraints can be written in the form

minF (x), cE (x) = 0, cI (x) ≤ 0, cTK (x)cL(x) = 0

where

F : Rn → R , cE : Rn → RmE , cI : R
n → RmI

are twice continuously differentiable functions

I = J ∪ K ∪ L is a disjunctive decomposition of I with
K = {k1, . . . , kp}, L = {l1, . . . , lp}
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5

A general problem

A general nonlinear programming problem with complementarity
constraints can be written in the form

minF (x), cE (x) = 0, cI (x) ≤ 0, cTK (x)cL(x) = 0

where

F : Rn → R , cE : Rn → RmE , cI : R
n → RmI

are twice continuously differentiable functions

I = J ∪ K ∪ L is a disjunctive decomposition of I with
K = {k1, . . . , kp}, L = {l1, . . . , lp}

Difficulty

The Mangasarian-Fromowitz constraint qualification is not satisfied
at any feasible point if K 6= ∅, L 6= ∅.

Therefore, special methods have been developed by considering
complementarity constraints cTK (x)cL(x) = 0 separately.
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Complementarity constraints I

The expressions themselves can be taken as the
complementarity pairs:

cK (x) ≤ 0, cL(x) ≤ 0,

cki (x)cli (x) = 0, i = 1, . . . , p.
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Complementarity constraints I

The expressions themselves can be taken as the
complementarity pairs:

cK (x) ≤ 0, cL(x) ≤ 0,

cki (x)cli (x) = 0, i = 1, . . . , p.

One of the constraints can be slacked:

cK (x)− sK = 0, sK ≤ 0, cL(x) ≤ 0,

sTK cL(x) = 0.
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Complementarity constraints I

The expressions themselves can be taken as the
complementarity pairs:

cK (x) ≤ 0, cL(x) ≤ 0,

cki (x)cli (x) = 0, i = 1, . . . , p.

One of the constraints can be slacked:

cK (x)− sK = 0, sK ≤ 0, cL(x) ≤ 0,

sTK cL(x) = 0.

Both of the expressions in the constraint can be slacked:

cK (x)− sK = 0, cL(x)− sL = 0, sK ≤ 0, sL ≤ 0,

sTK sL = 0.
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Complementarity constraints II

Case cK (x) ≡ xK ≤ 0, cL(x) ≡ xL ≤ 0:

Relaxation approach where xTK xL = 0 is changed to

xki xli ≥ −θ, i = 1, . . . , p (1)

and the relaxation parameter θ > 0 is driven to zero.
[Scholtes, Ralph, Wright, Liu, Sun, Ragunathan, Biegler]
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Complementarity constraints II

Case cK (x) ≡ xK ≤ 0, cL(x) ≡ xL ≤ 0:

Relaxation approach where xTK xL = 0 is changed to

xki xli ≥ −θ, i = 1, . . . , p (1)

and the relaxation parameter θ > 0 is driven to zero.
[Scholtes, Ralph, Wright, Liu, Sun, Ragunathan, Biegler]

A different relaxation scheme where, in addition to (1), the
nonpositive bounds are relaxed to

xki ≤ δ, xli ≤ δ.

The algorithm drives either θ or δ, but not both, to zero.
[De Miguel, Friedlander, Nogales, Scholtes]
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Complementarity constraints II

Case cK (x) ≡ xK ≤ 0, cL(x) ≡ xL ≤ 0:

Relaxation approach where xTK xL = 0 is changed to

xki xli ≥ −θ, i = 1, . . . , p (1)

and the relaxation parameter θ > 0 is driven to zero.
[Scholtes, Ralph, Wright, Liu, Sun, Ragunathan, Biegler]

A different relaxation scheme where, in addition to (1), the
nonpositive bounds are relaxed to

xki ≤ δ, xli ≤ δ.

The algorithm drives either θ or δ, but not both, to zero.
[De Miguel, Friedlander, Nogales, Scholtes]

The penalization of the complementarity constraint where the
objective is modified as

F (x) + ρxTK xL,

for a sequence of increasing penalty parameters ρ > 0.
[Anitescu, Hu, Ralph, Leyffer, Lopez-Calva, Nocedal]
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Assumption

Here, we describe an interior-point method that uses l1 exact
penalty function instead of complementarity constraints.

Assumption

In the original problem

minF (x), cE (x) = 0, cI (x) ≤ 0, cTK (x)cL(x) = 0,

where I = J ∪ K ∪ L = {1, . . . ,mI }, we assume (to simplify the
description and analysis of the method) without a loss of generality
that E = J = ∅.
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The l1 exact penalty function

Thus we are concerned with the problem

minF (x), cK (x) ≤ 0, cL(x) ≤ 0, cTK (x)cL(x) = 0

that can be replaced by the problem

min{F (x) + ρcTK (x)cL(x)}, cK (x) ≤ 0, cL(x) ≤ 0

which has the same solution if ρ > 0 is sufficiently large.
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The l1 exact penalty function

Thus we are concerned with the problem

minF (x), cK (x) ≤ 0, cL(x) ≤ 0, cTK (x)cL(x) = 0

that can be replaced by the problem

min{F (x) + ρcTK (x)cL(x)}, cK (x) ≤ 0, cL(x) ≤ 0

which has the same solution if ρ > 0 is sufficiently large.
Note that

cI =

[
cK
cL

]

∈ RmI ,

K = {k1, . . . , kp} ≡ {1, . . . ,mI/2},

L = {l1, . . . , lp} ≡ {mI/2 + 1, . . . ,mI},

and p = mI/2.
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The interior-point method

The constraints of this problem usually satisfy the
Mangasarian-Fromowitz constraint qualification so it can be solved
by an interior-point method.
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The interior-point method

The constraints of this problem usually satisfy the
Mangasarian-Fromowitz constraint qualification so it can be solved
by an interior-point method.
Thus we solve a sequence of the following IP subproblems

min{F (x) + ρsTK sL − µeT ln(SK )e − µeT ln(SL)e}

cK (x) + sK = 0, cL(x) + sL = 0

where

ρ > 0, µ > 0 are penalty / barrier parameters

sK > 0, sL > 0 are vectors of slack variables

SK = diag(sK ), SL = diag(sL)
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The interior-point method

The constraints of this problem usually satisfy the
Mangasarian-Fromowitz constraint qualification so it can be solved
by an interior-point method.
Thus we solve a sequence of the following IP subproblems

min{F (x) + ρsTK sL − µeT ln(SK )e − µeT ln(SL)e}

cK (x) + sK = 0, cL(x) + sL = 0

where

ρ > 0, µ > 0 are penalty / barrier parameters

sK > 0, sL > 0 are vectors of slack variables

SK = diag(sK ), SL = diag(sL)

If we denote s = (sK , sL), u = (uK , uL), where uk , uL are vectors of
Lagrange multipliers, then the Lagrange function has the form

L(x , s, u) = F (x) + ρsTK sL − µeT ln(SK )e − µeT ln(SL)e

+ uTK (cK (x) + sK ) + uTL (cL(x) + sL)
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The KKT conditions

Denoting UK = diag(uK ), UL = diag(uL), and AK = ∇cK (x),
AL = ∇cL(x), we obtain the following necessary KKT conditions

∇xL(x , s, u) = 0,

∇sKL(x , s, u) = 0, ∇sLL(x , s, u) = 0,

∇uKL(x , s, u) = 0, ∇uLL(x , s, u) = 0

or
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The KKT conditions

Denoting UK = diag(uK ), UL = diag(uL), and AK = ∇cK (x),
AL = ∇cL(x), we obtain the following necessary KKT conditions

∇xL(x , s, u) = 0,

∇sKL(x , s, u) = 0, ∇sLL(x , s, u) = 0,

∇uKL(x , s, u) = 0, ∇uLL(x , s, u) = 0

or

∇F (x) + AK (x)uK + AL(x)uL = 0 ≡ g(x , u),

SKUKe + ρSKSLe − µe = 0 ≡ gK (s, u),

SLULe + ρSKSLe − µe = 0 ≡ gL(s, u),

cK (x) + sK = 0,

cL(x) + sL = 0.
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The Newton method

Applying the Newton method to this nonlinear system we obtain












G (x , u) 0 0 AK (x) AL(x)

0 UK + ρSL ρSK SK 0

0 ρSL UL + ρSK 0 SL

AT
K (x) I 0 0 0

AT
L (x) 0 I 0 0

























∆x

∆sK

∆sL

∆uK

∆uL













= −









g(x , u)
gK (s, u)
gL(s, u)
cK + sK
cL + sL









where

G (x , u) = ∇2F (x) +
∑

i∈K
ui∇

2ci (x) +
∑

i∈L
ui∇

2ci (x).
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The iteration process

The interior-point method for nonlinear programming with
complementarity constraints can be roughly described in the
following form.

1 Given vectors x ∈ Rn, sK ∈ Rp, sL ∈ Rp, uK ∈ Rp, uL ∈ Rp

such that sK > 0, sL > 0 and parameters µ > 0, ρ > 0.

2 We determine direction vectors ∆x , ∆sK , ∆sL, ∆uK , ∆uL by
solving linear system equivalent to above.

3 We choose a step-length α > 0.

4 Set

x := x + α∆x , sK := sK + α∆sK , sL := sL + α∆sL,

uK := uK + α∆uK , uL := uL + α∆uL

5 We determine new parameters µ > 0, ρ > 0.

L. Lukšan, C. Matonoha, J. Vlček IPM for NPP with CC
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Symmetric form

Our system of linear equations is nonsymmetric but it can be easily
transformed to the symmetric form





G 0 AI

0 M−1
I I

AT
I I 0









∆x

∆sI
∆uI



 = −





g

S−1
I gI

cI + sI





where

AI = [AK ,AL], gI =

[
gK
gL

]

, sI =

[
sK
sL

]

, uI =

[
uK
uL

]

and

M−1
I

=

[
S−1
K (UK + ρSL) ρI

ρI S−1
L

(UL + ρSK )

]
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Elimination of vector ∆sI

This system can be further simplified by the elimination of vector
∆sI . Using the second equation, we obtain

∆sI = −MI (∆uI + S−1
I

gI ),

which after substitution into the third equation gives

[
G AI

AT
I −MI

]

︸ ︷︷ ︸

K

[
∆x

∆uI

]

= −

[
g

cI + sI −MIS
−1
I

gI

]
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Lemma

Lemma

Assume that the diagonal matrix

DK = DL = UKUL + ρ(UKSK + ULSL)

is nonsingular. Then

MI =

[
DK 0
0 DL

]−1 [
SK (UL + ρSK ) −ρSKSL

−ρSKSL SL(UK + ρSL)

]

If diagonal matrices SK , SL, UK , UL are positive definite, then also
MI is positive definite.

L. Lukšan, C. Matonoha, J. Vlček IPM for NPP with CC
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Preconditioned iterative method

Linear system

[
G AI

AT
I −MI

] [
∆x

∆uI

]

= −

[
g

cI + sI −MIS
−1
I

gI

]

with the matrix

K =

[
G AI

AT
I −MI

]

can be solved iteratively by the conjugate gradient method
preconditioned by the matrix

C =

[
D AI

AT
I −NI

]

where D is a positive definite diagonal matrix approximating G

(e.g. a diagonal of G ) and NI is a suitable matrix. We assume that
the matrix C is nonsingular.
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The choice of NI

We consider two cases for NI .

1 First, let

NI = MI =

[
DK 0
0 DL

]−1 [
SK (UL + ρSK ) −ρSKSL

−ρSKSL SL(UK + ρSL)

]

In this case, preconditioner C has advantageous properties but
a disadvantage is that matrix MI can be indefinite.

L. Lukšan, C. Matonoha, J. Vlček IPM for NPP with CC
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The choice of NI

We consider two cases for NI .

1 First, let

NI = MI =

[
DK 0
0 DL

]−1 [
SK (UL + ρSK ) −ρSKSL

−ρSKSL SL(UK + ρSL)

]

In this case, preconditioner C has advantageous properties but
a disadvantage is that matrix MI can be indefinite.

2 This fact motivated us to use a positive diagonal of MI .
Nevertheless, preconditioner C with

NI = diagMI =

[
D−1
K SK (UL + ρSK ) 0

0 D−1
L

SL(UK + ρSL)

]

has not excellent properties as the previous one and
computational efficiency is also lower in comparison with the
choice NI = MI .
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The case NI = MI I

The following theorems demonstrate advantageous properties of
preconditioner C with the choice NI = MI .

Theorem 1

Matrix KC−1 has at least mI unit eigenvalues with mI

corresponding linearly independent eigenvectors. Remaining
eigenvalues of KC−1 are eigenvalues of matrix G̃ D̃−1, where

G̃ = G + AIM
−1
I AT

I , D̃ = D + AIM
−1
I AT

I .

If matrices G̃ , D̃ ≻ 0, then all eigenvalues of KC−1 are positive.

Theorem 2

The dimension of the Krylov subspace defined by matrix KC−1 is
at most n+ 1.
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The case NI = MI II

Theorem 3

Consider the CGM with preconditioner C applied to our system.
Assume that G̃ , D̃ ≻ 0 and choose the initial estimation of ∆x in
such a way that the second equation is satisfied accurately, e.g. set

∆x = −D−1AI (A
T
I D

−1AI )
−1(cI + sI −MIS

−1
I

gI )

Then:

Vector ∆x∗ (the first part of the solution) is found after n
iterations at most.

Algorithm cannot fail before ∆x∗ is found.

The norm ‖∆x −∆x∗‖ converges to zero at least R-linearly

with a quotient
√
κ−1√
κ+1

, where κ is the spectral condition

number of matrix G̃ D̃−1.

If ∆x = ∆x∗, then also ∆uI = ∆u∗I .

L. Lukšan, C. Matonoha, J. Vlček IPM for NPP with CC
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Stepsize

Having computed directions ∆x , ∆sI , ∆uI , we need to select
a suitable stepsize α for computing new vectors

x+ = x +min(α,αx)∆x ,

s+
I

= sI +min(α,αs)∆sI ,

u+I = uI +min(α,αu)∆uI ,

where αx , αs , αu > 0 are suitable sufficiently large upper bounds.

L. Lukšan, C. Matonoha, J. Vlček IPM for NPP with CC
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Stepsize

Having computed directions ∆x , ∆sI , ∆uI , we need to select
a suitable stepsize α for computing new vectors

x+ = x +min(α,αx)∆x ,

s+
I

= sI +min(α,αs)∆sI ,

u+I = uI +min(α,αu)∆uI ,

where αx , αs , αu > 0 are suitable sufficiently large upper bounds.
Theoretically, the Newton method requires a full step α = 1 but
the unit stepsize is sometimes unsuitable and has to be decreased.
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Stepsize

Having computed directions ∆x , ∆sI , ∆uI , we need to select
a suitable stepsize α for computing new vectors

x+ = x +min(α,αx)∆x ,

s+
I

= sI +min(α,αs)∆sI ,

u+I = uI +min(α,αu)∆uI ,

where αx , αs , αu > 0 are suitable sufficiently large upper bounds.
Theoretically, the Newton method requires a full step α = 1 but
the unit stepsize is sometimes unsuitable and has to be decreased.
Usually, a merit function P(α) with P ′(0) < 0 is used for this
purpose and a stepsize α is chosen in such a way that

α = βj min(1, αx)

where 0 < β < 1, and j ≥ 0 is the lowest integer for which
P(α) < P(0). We use the following merit function.

L. Lukšan, C. Matonoha, J. Vlček IPM for NPP with CC
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Merit function

P(α) = F (x + α∆x)

+ (uK +∆uK )
T (cK (x + α∆x) + sK + α∆sK )

+ (uL +∆uL)
T (cL(x + α∆x) + sL + α∆sL)

+ ρ(sK +∆sK )
T (sL + α∆sL) + ρ(sL +∆sL)

T (sK + α∆sK )

− µeT ln(SK + α∆SK )e − µeT ln(SL + α∆SL)e

+
σ

2
‖cK (x + α∆x) + sK + α∆sK‖

2

+
σ

2
‖cL(x + α∆x) + sL + α∆sL‖

2

where ρ > 0, µ > 0, σ ≥ 0. The following theorem holds.
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Theorem

Theorem

Let UK + ρSL ≻ 0, UL + ρSK ≻ 0 and let the pair ∆x , ∆uI be
an inexact solution of our system so that

[
G AI

AT
I −MI

] [
∆x

∆uI

]

+

[
g

cI + sI −MIS
−1
I

gI

]

=

[
r

rI

]

, (2)

where rTI = [rTK , rTL ]. If

σ > −σ(∆x ,∆sK ,∆sL,G , cK (x), cL(x), sK , sL, uK , uL, ρ)

and if (2) is solved with a sufficient precision, namely if

∆xT r + σ(cK + sK )
T rK + σ(cL + sL)

T rL < r(. . . )

then P ′(0) < 0.
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Upper bounds I

Now we focus on the determination of upper bounds αx , αs , αu .

We usually set

αx =
∆

‖∆x‖

where value ∆ is used as a safeguard against possible
overflows.
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Upper bounds I

Now we focus on the determination of upper bounds αx , αs , αu .

We usually set

αx =
∆

‖∆x‖

where value ∆ is used as a safeguard against possible
overflows.

The upper bound αs assures positivity of s+I . Thus we should

set αs ≤ α
(1)
s , where

α
(1)
s = τ min

i∈I ,∆si<0

(

−
si

∆si

)

and 0 < τ < 1 is a coefficient close to unit.
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Upper bounds I

Now we focus on the determination of upper bounds αx , αs , αu .

We usually set

αx =
∆

‖∆x‖

where value ∆ is used as a safeguard against possible
overflows.

The upper bound αs assures positivity of s+I . Thus we should

set αs ≤ α
(1)
s , where

α
(1)
s = τ min

i∈I ,∆si<0

(

−
si

∆si

)

and 0 < τ < 1 is a coefficient close to unit.

Unfortunately, the same idea cannot be used for Lagrange
multipliers, since they can be negative if complementarity
constraints are not satisfied.
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Upper bounds II

Instead of inequality u+I > 0, we need to assure inequalities

U+
K + ρS+

L > 0, U+
L + ρS+

K > 0 (3)

used in previous Theorem. These inequalities restrict both αs and
αu. Thus we set

L. Lukšan, C. Matonoha, J. Vlček IPM for NPP with CC
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Upper bounds II

Instead of inequality u+I > 0, we need to assure inequalities

U+
K + ρS+

L > 0, U+
L + ρS+

K > 0 (3)

used in previous Theorem. These inequalities restrict both αs and
αu. Thus we set

αu = αs = min(α
(1)
s , α

(2)
s , α

(2)
s )

where

α
(2)
s = τ min

1≤i≤p

∆uki+ρ∆sli<0

(

−
uki + ρsli

∆uki + ρ∆sli

)

α
(3)
s = τ min

1≤i≤p

∆uli+ρ∆ski<0

(

−
uli + ρski

∆uli + ρ∆ski

)

L. Lukšan, C. Matonoha, J. Vlček IPM for NPP with CC



42

Upper bounds II

Instead of inequality u+I > 0, we need to assure inequalities

U+
K + ρS+

L > 0, U+
L + ρS+

K > 0 (3)

used in previous Theorem. These inequalities restrict both αs and
αu. Thus we set

αu = αs = min(α
(1)
s , α

(2)
s , α

(2)
s )

where

α
(2)
s = τ min

1≤i≤p

∆uki+ρ∆sli<0

(

−
uki + ρsli

∆uki + ρ∆sli

)

α
(3)
s = τ min

1≤i≤p

∆uli+ρ∆ski<0

(

−
uli + ρski

∆uli + ρ∆ski

)

Note that (3) imply

U+
K
+ ρ+S+

L
> 0, U+

L
+ ρ+S+

K
> 0

for every ρ+ ≥ ρ, so we can increase ρ in the next iteration.
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Global convergence

If the interior-point subproblems are solved with a sufficient
precision and parameters µ and ρ are updated by a suitable
way, then the interior-point method for nonlinear programming
with complementarity constraints is globally convergent.
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Global convergence

If the interior-point subproblems are solved with a sufficient
precision and parameters µ and ρ are updated by a suitable
way, then the interior-point method for nonlinear programming
with complementarity constraints is globally convergent.

Unfortunately, the strict rules for updating µ and ρ are not
suitable for large problems with sparse matrices (since it is
difficult to solve a large interior-point subproblem with a
sufficient precision).
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Global convergence

If the interior-point subproblems are solved with a sufficient
precision and parameters µ and ρ are updated by a suitable
way, then the interior-point method for nonlinear programming
with complementarity constraints is globally convergent.

Unfortunately, the strict rules for updating µ and ρ are not
suitable for large problems with sparse matrices (since it is
difficult to solve a large interior-point subproblem with a
sufficient precision).

Therefore, we use different strategies based on heuristic formulas
which have been verified by computational experiments.
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Update of µ I

Our implementation of interior-point methods chooses the value µ
in such a way that

µ = max

(

µ, λ
sTK (uK + ρsL) + sTL (uL + ρsK )

mI

)

where µ > 0 is a small lower bound for the barrier parameter which
serves as a safeguard and 0 < λ < 1.
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Update of µ I

Our implementation of interior-point methods chooses the value µ
in such a way that

µ = max

(

µ, λ
sTK (uK + ρsL) + sTL (uL + ρsK )

mI

)

where µ > 0 is a small lower bound for the barrier parameter which
serves as a safeguard and 0 < λ < 1.
This choice corresponds to a usual strategy used for standard
nonlinear programming problems (where ρ = 0).
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Update of µ I

Our implementation of interior-point methods chooses the value µ
in such a way that

µ = max

(

µ, λ
sTK (uK + ρsL) + sTL (uL + ρsK )

mI

)

where µ > 0 is a small lower bound for the barrier parameter which
serves as a safeguard and 0 < λ < 1.
This choice corresponds to a usual strategy used for standard
nonlinear programming problems (where ρ = 0).
Computational experiments have shown that the algorithm
performs best when components

ski (uki + ρsli ), sli (uli + ρski ), 1 ≤ i ≤ p,

of the dot-product in numerator approach zero at a uniform rate.
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50

Update of µ II

The distance from uniformity can be measured by the ratio

ν = 2 p
min1≤i≤p[ski (uki + ρsli ) + sli (uli + ρski )]
∑p

i=1[ski (uki + ρsli ) + sli (uli + ρski )]

(also called the centrality measure). Clearly, 0 < ν ≤ 1.
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Update of µ II

The distance from uniformity can be measured by the ratio

ν = 2 p
min1≤i≤p[ski (uki + ρsli ) + sli (uli + ρski )]
∑p

i=1[ski (uki + ρsli ) + sli (uli + ρski )]

(also called the centrality measure). Clearly, 0 < ν ≤ 1.
The value λ is then computed by using ν. Heuristic formulas are
usually used for this purpose. In our implementation, we have used
the formula

λ = 0.1min

(
1− ν

20ν
, 2

)3
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Update of ρ

Parameter ρ should be increased if |cTK (x)cL(x)| (the violation of
complementarity constraints) is much larger than ‖c0I (x)‖, where

c0i (x) = max(ci (x), 0), i ∈ I .
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Update of ρ

Parameter ρ should be increased if |cTK (x)cL(x)| (the violation of
complementarity constraints) is much larger than ‖c0I (x)‖, where

c0i (x) = max(ci (x), 0), i ∈ I .

We use the condition

|cTK (x)cL(x)| ≤ ρmax(10−8, ‖c0I ‖)

where ρ > 0 is a suitable constant.
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Update of ρ

Parameter ρ should be increased if |cTK (x)cL(x)| (the violation of
complementarity constraints) is much larger than ‖c0I (x)‖, where

c0i (x) = max(ci (x), 0), i ∈ I .

We use the condition

|cTK (x)cL(x)| ≤ ρmax(10−8, ‖c0I ‖)

where ρ > 0 is a suitable constant.

If this inequality holds, we set

ρ+ = ρ

In the opposite case, we set

ρ+ = min(γρ, ρ)

where γ > 1 is a suitable coefficient and ρ > 0 is a large
upper bound which serves as a safeguard.
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Update of σ

Concerning parameter σ, we use a small constant value. If
P ′(0) ≥ 0, than σ is not increased, but the iteration is restarted
with G replaced by D, i.e. we solve

K ≡

[
D AI

AT
I −MI

] [
∆x

∆uI

]

= −

[
g

cI + sI −MIS
−1
I

gI

]

with preconditioner

C =

[
D AI

AT
I −NI

]

and NI = MI . It holds KC
−1 = I and we obtain the solution in the

first CG step.
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The algorithm I

Data:

Minimum precision for the direction determination 0 < ω < 1.

Line-search parameter 0 < β < 1.

Maximum step-length reduction 0 < τ < 1.

Lower bound for the barrier parameter µ > 0.

Level for changing the exact penalty parameter ρ > 0.

Upper bound for the exact penalty parameter ρ > 0.

Rate of the exact penalty parameter increase γ.

Step bound ∆ > 0.

Input:

Sparsity pattern of matrices ∇2F and AI .

Initial choice of vector x .
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The algorithm II

Step 1. Initiation:

Choose the values µ, ρ, σ > 0 (e.g. µ = 1, ρ = 1, σ = 0.01).

For i ∈ I set si := max(−ci (x), δs ) and ui := δu, where
δs , δu > 0 (e.g. δs = 0.1, δu = 0.1).

Compute value F (x) and vector cI (x). Set k := 0.

Step 2. Termination:

Compute matrix AI := AI (x) and vector g := g(x , u).

If complementarity constraints and KKT conditions are
satisfied with a sufficient precision and µ is sufficiently small,
terminate the computation; otherwise set k := k + 1.

Step 3. Approximation of the Hessian matrix:

Compute approximation G of the Hessian matrix G (x , u) by
using differences of gradient g(x , u).
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The algorithm III

Step 4. Direction determination:

Build linear system with matrix K and choose a suitable
preconditioner C .

Determine positive definite diagonal matrix D as an
approximation of the diagonal of G and factorize the matrix
AT
I D

−1AI + NI by using the complete or incomplete
Gill-Murray decomposition to obtain a representation of C−1.

Set ω = min(‖g‖, 1/k , ω).

Determine direction vectors ∆x , ∆uI as an inexact solution of
the linear system (with the precision ω) by using a
preconditioned Krylov-subspace method.

Compute vector ∆sI .

Compute directional derivative P ′(0) of the merit function
P(α).
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The algorithm IV

Step 5. Restart:

If P ′(0) ≥ 0, determine positive definite diagonal matrix D,
set G = D and go to Step 4.

Step 6. Step-length selection:

Define maximum step-lengths αx , αs , αu .

Find the minimum integer l ≥ 0 such that P(βlα) < P(0).

Set α = βlα.

Set x := x+, sI := s+I , uI := u+I , where x+, s+I , u+I are new
vectors.

Compute value F (x) and vector cI (x).

Step 7. Parameters update:

Determine new µ using λ and new ρ.

Go to Step 2.
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The problems

The algorithm was tested by using a set of 18 test problems with
100 variables. This set was obtained by a modification of test
problems for equality constrained minimization given in

[Lukšan, Vlček, TR 1998]

(Test18), which can be downloaded from

http://www.cs.cas.cz/luksan/test.html
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The problems

The algorithm was tested by using a set of 18 test problems with
100 variables. This set was obtained by a modification of test
problems for equality constrained minimization given in

[Lukšan, Vlček, TR 1998]

(Test18), which can be downloaded from

http://www.cs.cas.cz/luksan/test.html

In our set, equalities ci (x) = 0, 1 ≤ i ≤ m, are replaced by
complementarity constraints

ci (x) ≤ 0, ci+p(x) ≤ 0,

ci (x)ci+p(x) = 0, 1 ≤ i ≤ p = m/2.

We have used preconditioner C with NI = MI in our tests
(preconditioner C with NI = diagMI gave worse results).
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Columns of the table

The results of the tests are listed in following table, where

NIT is the number of iterations,

NFV is the number of function evaluations,

NFG is the number of gradient evaluations (NFG is greater
than NFV since the second order derivatives are computed by
using gradient differences),

NCG is the number of CG iterations,

the last row contains

summary results for all of 18 problems together with
the total number of restarts NRS
and the total computational time.
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Table

P NIT NFV NFG NCG F ‖c0
I
‖ |cT

K
cL| ‖g‖

1 35 35 210 977 3.98714 0.0 0.3E-13 0.1E-11
2 71 71 994 8354 2084.88 0.9E-12 0.3E-08 0.2E-09
3 12 12 72 41 14.1685 0.0 0.4E-21 0.6E-06
4 33 34 198 165 454.645 0.2E-14 0.2E-20 0.4E-09
5 46 55 460 465 4.890021E-01 0.0 0.6E-11 0.1E-06
6 19 19 266 88 6037.6532 0.4E-15 0.2E-29 0.5E-08
7 16 16 112 29 -34.9980 0.0 0.3E-25 0.3E-09
8 128 189 896 1858 9743.49 0.4E-15 0.9E-14 0.1E-08
9 450 2007 3157 5911 9.99304 0.3E-01 0.1E-05 0.2E-03

10 13 13 78 64 2.23397 0.6E-16 0.1E-11 0.3E-10
11 74 75 444 8471 1.663530E-16 0.5E-11 0.1E-16 0.6E-09
12 33 33 231 2928 3.748598E-11 0.0 0.1E-10 0.2E-10
13 39 102 312 1928 339.382 0.0 0.4E-27 0.4E-08
14 72 72 504 3544 2.141127E-21 0.0 0.2E-19 0.4E-15
15 126 128 756 13551 1.083434E-17 0.0 0.6E-17 0.6E-12
16 42 49 210 4848 2.846946E-17 0.0 0.2E-17 0.1E-14
17 32 42 160 2278 29.4314 0.2E-12 0.9E-13 0.8E-07
18 108 146 540 3849 32.5028 0.5E-64 0.9E-11 0.4E-07

Σ 1349 3098 9600 59349 NRS = 63 TIME = 1.72
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66

Conclusion

The results proposed in previous table imply several conclusions:

The idea used in this report seems to be reasonable. The
algorithm solved all problems except Problem 9 with a
sufficient precision. Problem 9 was solved after changing
several parameters (ρ, ρ and γ).
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Conclusion

The results proposed in previous table imply several conclusions:

The idea used in this report seems to be reasonable. The
algorithm solved all problems except Problem 9 with a
sufficient precision. Problem 9 was solved after changing
several parameters (ρ, ρ and γ).

Linear system with matrix K is usually worse conditioned than
similar system obtained by interior-point methods for standard
nonlinear programming problems. Thus the number of CG
iterations is larger in comparison with problems where
complementarity constraints are not present.
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Conclusion

The results proposed in previous table imply several conclusions:

The idea used in this report seems to be reasonable. The
algorithm solved all problems except Problem 9 with a
sufficient precision. Problem 9 was solved after changing
several parameters (ρ, ρ and γ).

Linear system with matrix K is usually worse conditioned than
similar system obtained by interior-point methods for standard
nonlinear programming problems. Thus the number of CG
iterations is larger in comparison with problems where
complementarity constraints are not present.

We have used a simple procedure for updating the exact
penalty parameter ρ and have observed that the efficiency of
the method strongly depends on parameters ρ, ρ and γ. For
this reason, the efficiency of our algorithm could be increased
by using more sophisticated procedure, which could be the
main field for future research.
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MacMPEC collection

The algorithm was also tested by using the problems from the
MacMPEC collection

http://wiki.mcs.anl.gov/leyffer/index.php/MacMPEC

The selected problems were those with classification

OO – general objective with general constraints

QQ – quadratic objective with quadratic constraints

QO – quadratic objective with general constraints
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MacMPEC collection

The algorithm was also tested by using the problems from the
MacMPEC collection

http://wiki.mcs.anl.gov/leyffer/index.php/MacMPEC

The selected problems were those with classification

OO – general objective with general constraints

QQ – quadratic objective with quadratic constraints

QO – quadratic objective with general constraints

Our preliminary computational experiments show that the
algorithm solved nearly half of problems (12/29). The main task
for future research is to improve our algorithm and find more
sophisticated procedures for updating parameters ̺, σ, µ.
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Thank you

Thank you for your attention!
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