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1. Introduction to AMPL
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Mathematical Programming

Programming – was in use by 1940 to describe the planning or scheduling
of activities within a large optimization

Variable – programmers found that they could represent the amount or
level of each activity as a variable whose value was to be determined

Constraints – the restrictions inherent in the planning or scheduling
problem as a set of equations or inequalities involving the variables

Objective – a function of the variables, such as cost or profit, that could be
used to decide whether one one solution was better than another

Mathematical Programming – to describe the minimization or maximization of
an objective function of many variables, subject to constraints on the
variables
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Linear Programming

One special case of mathematical programming

Linear Program – all the costs, requirements and other quantities of interest
are terms strictly proportional to the levels of the activities, or sums of
such terms
Mathematical terminology: the objective is a linear function, and the
constraints are linear equations and inequalities

Linear Programming – the process of setting up such a problem and solving
it
● It is particularly important because a wide variety of problems can

be modeled as linear programs
● There are fast and reliable methods for solving linear programs even

with thousands of variables and constraints
● The ideas of linear programming are also important for analyzing

and solving mathematical programming problems that are not linear
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Large-scale Optimization

The linearity assumption is sometimes too unrealistic

Nonlinear Program – if instead some smooth nonlinear functions of the
variables are used in the objective or constraints
● Solving such a problem is harder, though in practice not impossibly

so
● Computational methods for solving nonlinear programs in many

variables were developed in recent decades
● After the success of methods for linear programming

Large-scale Optimization – the field of mathematical programming described
above

Integer Programming – if some variables must take on whole number, or
integral, values (the assumptions of linear programming break down, in
general becomes much harder)
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The algorithmic method

The full sequence of events is more like this:

1. Formulate a model, the abstract system of variables, objectives, and
constraints that represent the general form of the problem to be solved

2. Collect data that define a specific problem instance

3. Generate a specific objective function and constraint equations from
the model and data

4. Solve the problem instance by running a program, or solver, to apply
an algorithm that finds optimal values of the variables

5. Analyze the results

6. Refine the model and data as necessary, and repeat
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Modeling languages

There are many differences between the form in which human modelers
understand a problem and the form in which solver algorithms work with it.
Conversion from the modeler’s form to the algorithm’s form is consequently a
time-consuming, costly, and often error-prone procedure.

A modeling language for mathematical programming
● is designed to express the modeler’s form in a way that can serve as

direct input to a computer system
● the translation to the algorithm’s form can then be performed entirely by

computer, without the intermediate stage of computer programming
● it can help to make mathematical programming more economical and

reliable
● it is particularly advantageous for development of new models and for

documentation of models that are subject to change
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Algebraic modeling language

An algebraic modeling language is a popular variety based on the use of
traditional mathematical notation to describe objective and constraint
functions. An algebraic language provides computer-readable equivalents
of notations such as

xj + yj ,
n

∑

j=1

aijxj , xj ≥ 0, and j ∈ S

that would be familiar to anyone who has studied algebra or calculus.

Advantages of algebraic modeling languages:
● familiarity
● applicability to a particularly wide variety of linear, nonlinear and integer

programming models
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About AMPL

● AMPL is an algebraic modeling language for mathematical
programming problems subject to constraints

● It was designed and implemented by
Robert Fourer, David M. Gay, Brian W. Kernigham

around 1985, and has been evolving ever since
● It is notable for the similarity of its arithmetic expressions to customary

algebraic notation
● It offers an interactive command environment for setting up and solving

mathematical programming problems
● Its flexible interface enables several solvers to be available at once so a

user can switch among solvers and select options that may improve
solver performance
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2. Maximizing profit
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Maximizing profit 1

A steel company must decide how to allocate next week’s time on a rolling
mill. The mill takes unfinished slabs of steel as input, and can produce
either of two semi-finished products, which we will call bands and coils.
● The mill’s two products come off the rolling line at different rates:

Tons per hour: Bands 200, Coils 140
● They also have different profitabilities:

Profit per ton: Bands $25, Coils $30
● The following weekly production amounts are the most that can be

justified in light of the current booked orders:
Maximum tons: Bands 6.000, Coils 4.000

The question facing the company is as follows:
If 40 hours of production time are available this week, how many tons of
bands and how many tons of coils should be produced to bring in the
greatest profit?
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Maximizing profit 2

Variables:
● xB – the number of tons of bands to be produced
● xC – the number of tons of coils to be produced
The total hours to produce all these tons is given by

(hours to make a ton of bands)*xB + (hours to make a ton of coils)*xC

It cannot exceed the 40 hours available, so we have a constraint:

xB/200 + xC/140 ≤ 40.

There are also production limits:

0 ≤ xB ≤ 6000, 0 ≤ xC ≤ 4000

By analogy with the formula for total hours, the total profit must be
(profit per ton of bands)*xB + (profit per ton of coils)*xC

That is, our objective is to maximize

25xB + 30xC .
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Maximizing profit 3

We have the following linear program:

Maximize 25xB + 30xC

Subject to xB/200 + xC/140 ≤ 40

0 ≤ xB ≤ 6000

0 ≤ xC ≤ 4000

The solution is
● 6000 tons of bands
● 1400 tons of coils
● profit is $192000
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Maximizing profit 4

Solving this linear program with AMPL can be as simple as typing AMPL’s
description of the linear program into a file prod.mod
var XB;
var XC;
maximize Profit: 25 * XB + 30 * XC;
subject to Time: (1/200) * XB + (1/140) * XC <= 40;
subject to B limit: 0 <= XB <= 6000;
subject to C limit: 0 <= XB <= 4000;
and the typing a few AMPL commands:
ampl: model prod.mod;
ampl: solve;
MINOS 5.5: optimal solution found.
2 iterations, objective 192000
ampl: display XB, XC;
XB = 6000
XC = 1400
ampl: quit;
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Maximizing profit 5

An improved model: Steel production model steel.mod
set PROD; # products
param rate {PROD} > 0; # tons produced per hour
param avail >= 0; # hours available in week
param profit {PROD}; # profit per ton
param market {PROD} >= 0; # limit on tons sold in week
var Make {p in PROD} >= 0, <= market[p];
# tons produced
maximize Total Profit:

sum {p in PROD} profit[p] * Make[p];
# objective: total profit from all products
subject to Time:

sum {p in PROD} (1/rate[p]) * Make[p] <= avail;
# constraints: total of hours used by all products
# may not exceed hours available
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Maximizing profit 6

Data for steel production model steel1.dat
set PROD := bands coils;
param: rate profit market :=

bands 200 25 6000

coils 140 30 4000 ;
param avail := 40;
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Maximizing profit 7

Then a solution can be found and displayed by typing just a few
statements:
ampl: model steel.mod;
ampl: data steel1.dat;
ampl: solve;
MINOS 5.5: optimal solution found.
2 iterations, objective 192000
ampl: display Make;
Make[ * ] :=
bands 6000
coils 1400
;
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Maximizing profit 8

Suppose that we add another product, steel plate. The model stays the
same, but in the data we have to add plate to the list of members for the set
PROD, and we have to add a line of parameter values for plate:
set PROD := bands coils plate ;

param: rate profit market :=

bands 200 25 6000

coils 140 30 4000

plate 160 29 3500 ;
param avail := 40;
We put this version of the data in a file steel2.dat and use AMPL to get the
solution:
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Maximizing profit 9

ampl: model steel.mod;
ampl: data steel2.dat;
ampl: solve;
MINOS 5.5: optimal solution found.
2 iterations, objective 196400
ampl: display Make;
Make[ * ] :=
bands 6000
coils 0
plate 1600
;
Profits have increased compared to the two-variable version, but now it is
best to produce no coils at all! In reality, a whole product line cannot be
shut down solely to increase weekly profits. The simplest way to reflect
this in the model is to add lower bounds on the production amounts.
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Maximizing profit 10

Lower bounds on production – steel3.mod
set PROD; # products
param rate {PROD} > 0; # tons produced per hour
param avail >= 0; # hours available in week
param profit {PROD}; # profit per ton
param commit {PROD} >= 0;
# lower limit on tons sold in week
param market {PROD} >= 0;
# upper limit on tons sold in week
var Make {p in PROD} >= commit[p] , <= market[p];
# tons produced
maximize Total Profit:

sum {p in PROD} profit[p] * Make[p];
# objective: total profit from all products
subject to Time:

sum {p in PROD} (1/rate[p]) * Make[p] <= avail;
# constraints: total of hours used by all products
# may not exceed hours available
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Maximizing profit 11

Data for lower bounds on production steel3.dat
set PROD := bands coils plate;

param: rate profit commit market :=

bands 200 25 1000 6000

coils 140 30 500 4000

plate 160 29 750 3500 ;
param avail := 40;
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Maximizing profit 12

After these changes are made, we can run AMPL again to get a more
realistic solution:
ampl: model steel3.mod;
ampl: data steel3.dat;
ampl: solve;
MINOS 5.5: optimal solution found.
2 iterations, objective 194828.5714
ampl: display commit, Make, market;

: commit Make market :=

bands 1000 6000 6000

coils 500 500 4000

plate 750 1028.57 3500
;
It is most profitable to produce bands up to the market limit, and then to
produce plate with the remaining available time.
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3. Minimizing costs
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Minimizing costs 1

Consider the problem or choosing prepared foods to meet certain
nutritional requirements. Suppose that precooked dinners of the following
kinds are available for the following prices per package. These dinners
provide the following percentage, per package, of the minimum daily
requirements for vitamins A, B1, B2 and C.

A B1 B2 C

BEEF beef $3.19 60% 10% 15% 20%
CHK chicken $2.59 8% 20% 20% 0%
FISH fish $2.29 8% 15% 10% 10%
HAM ham $2.89 40% 35% 10% 40%
CHS cheese $1.89 15% 15% 15% 35%
MTL meat loaf $1.99 70% 15% 15% 30%
SPG spaghetti $1.99 25% 25% 15% 50%
TUR turkey $2.49 60% 15% 10% 20%
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Minimizing costs 2

The problem is to find the cheapest combination of packages that will
meet a week’s requirements – that is, at least 700% of the daily
requirements for each nutrient.
The total cost of the diet will be

3.19xBEEF + 2.59xCHK + 2.29xFISH + 2.89xHAM +

1.89xCHS + 1.99xMTL + 1.99xSPG + 2.49xTUR → min

The total percentage of the vitamin A requirement is given by a similar
formula

60xBEEF + 8xCHK + 8xFISH + 40xHAM +

15xCHS + 70xMTL + 25xSPG + 60xTUR ≥ 700

The same is for vitamins B1, B2, C.
We can specify a file diet.mod.
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Minimizing costs 3

var Xbeef >= 0; var Xchk >= 0; var Xfish >= 0;
var Xham >= 0; var Xchs >= 0; var Xmtl >= 0;
var Xspg >= 0; var Xtur >= 0;
minimize cost:

3.19 * Xbeef + 2.59 * Xchk + 2.29 * Xfish + 2.89 * Xham +
1.89 * Xchs + 1.99 * Xmtl + 1.99 * Xspg + 2.49 * Xtur ;

subject to A:
60* Xbeef + 8 * Xchk + 8 * Xfish + 40 * Xham +
15* Xchs + 70 * Xmtl + 25 * Xspg + 60 * Xtur >= 700 ;

subject to B1:
. . .

subject to B2:
. . .

subject to C:
. . .



PANM 15, 2010 L.Lukšan, C.Matonoha, J.Vlček: AMPL - 28

Minimizing costs 4

Again a few AMPL commands then suffice to read the file:
ampl: model diet.mod;
ampl: solve;
MINOS 5.5: optimal solution found.
6 iterations, objective 88.2
ampl: display Xbeef, Xchk, Xfish, Xham, Xchs, Xmtl, Xspg, Xtur;
Xbeef = 0
Xchk = 0
Xfish = 0
Xham = 0
Xchs = 46.6667
Xmtl = -3.69159e-18
Xspg = -4.05347e-16
Xtur = 0
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Minimizing costs 5

The optimal solution is found quickly, but it is hardly what we might have
hoped for. The cost is minimized by a monotonous diet of 46 2

3 packages
of cheese. This neatly provides

15% · 46.6667 = 700%

of the requirement for vitamins A, B1, and B2, and a lot more vitamin C
than necessary; the cost is only

$1.89 · 46.6667 = $88.20

Better solution would be generated by requiring the amount of each
vitamin to equal 700% exactly. The solution is approximately
● 19.5 packages of chicken
● 16.3 packages of cheese
● 4.3 of meat loaf
But since equalities are more restrictive than inequalities, the cost goes up
to $89.99.
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Minimizing costs 6

A general model – file diet.mod
set NUTR;
set FOOD;
param cost {FOOD} > 0;
param f min {FOOD} >= 0;
param f max {j in FOOD } >= f min[j];
param n min {NUTR} >= 0;
param n max {i in NUTR } >= n min[i];
param amt {NUTR, FOOD} >= 0;
var Buy {j in FOOD } >= f min[j], <= f max[j];
minimize Total Cost:

sum {j in FOOD } cost[j] * Buy[j];
subject to Diet {i in NUTR }:

n min[i] <= sum {j in FOOD }
amt[i,j] * Buy[j] <= n max[i];

Now we specify appropriate data and solve the problem.
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Minimizing costs 7

Data for diet model – diet1.dat
set NUTR := A B1 B2 C;
set FOOD := BEEF CHK FISH HAM CHS MTL SPG TUR;
param: cost f min f max :=

BEEF 3.19 0 100

CHK 2.59 0 100

FISH 2.29 0 100

HAM 2.89 0 100

CHS 1.89 0 100

MTL 1.99 0 100

SPG 1.99 0 100

TUR 2.49 0 100 ;
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Minimizing costs 8

param: n min n max :=

A 700 10000

B1 700 10000

B2 700 10000

C 700 10000 ;
param amt (tr):

A B1 B2 C :=

BEEF 60 10 15 20

CHK 8 20 20 0

FISH 8 15 10 10

HAM 40 35 10 40

CHS 15 15 15 35

MTL 70 15 15 30

SPG 25 25 15 50

TUR 60 15 10 20 ;
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Minimizing costs 9

Then AMPL is used as follows to read these files and to solve the LP:
ampl: model diet.mod;
ampl: data diet1.dat;
ampl: solve;
MINOS 5.5: optimal solution found.
6 iterations, objective 88.2
ampl: display Buy;
Buy [ * ] :=

BEEF 0

CHK 0

FISH 0

HAM 0

CHS 46.6667

MTL -3.69159e-18

SPG -4.05347e-16

TUR 0
;
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Minimizing costs 10

Now suppose that we want to make the following enhancements. The
weekly diet must contain between 2 and 10 packages of each food. The
amount of sodium and calories in each package is also given; total
sodium must not exceed 40000 mg, and total calories must be between
16000 and 24000. Data for enhanced diet model – diet2.dat
set NUTR := A B1 B2 C NA CAL;
set FOOD := BEEF CHK FISH HAM CHS MTL SPG TUR;
param: cost f min f max :=

BEEF 3.19 2 10

CHK 2.59 2 10

FISH 2.29 2 10

HAM 2.89 2 10

CHS 1.89 2 10

MTL 1.99 2 10

SPG 1.99 2 10

TUR 2.49 2 10
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Minimizing costs 11

param: n min n max :=

A 700 20000

B1 700 20000

B2 700 20000

C 700 20000

NA 0 40000

CAL 16000 24000 ;
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Minimizing costs 12

param amt (tr):

A B1 B2 C NA CAL :=

BEEF 60 10 15 20 938 295

CHK 8 20 20 0 2180 770

FISH 8 15 10 10 945 440

HAM 40 35 10 40 278 430

CHS 15 15 15 35 1182 315

MTL 70 15 15 30 896 700

SPG 25 25 15 50 1329 370

TUR 60 15 10 20 1397 450 ;



PANM 15, 2010 L.Lukšan, C.Matonoha, J.Vlček: AMPL - 37

Minimizing costs 13

We can run AMPL again:
ampl: model diet.mod;
ampl: data diet2.dat;
ampl: solve;
MINOS 5.5: infeasible problem.
9 iterations
The message infeasible problem tells us that we have constrained the diet
too tightly; there is no way that all of the restrictions can be satisfied. We
can look for the source of the infeasibility by displaying some values
associated with the solution.
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Minimizing costs 14

ampl: display Diet.lb, Diet.body, Diet.ub;

: Diet.lb Diet.body Diet.ub :=

A 700 1993.00 20000

B1 700 841.091 20000

B2 700 601.091 20000

C 700 1272.55 20000

CAL 16000 17222.9 24000

NA 0 40000 40000
We can see that the diet returned by the solver does not supply enough
vitamin B2, while the amount of sodium has reached its upper bound.
There are two obvious choices: we could require less B2 or we could allow
more sodium. If we try the latter, a feasible solution becomes possible:
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Minimizing costs 15

ampl: let n max[”NA”] := 50000;
ampl: solve;
MINOS 5.5: optimal solution found.
5 iterations, objective 118.0594032
ampl: display Buy;
Buy [ * ] :=

BEEF 5.36061

CHK 2

FISH 2

HAM 10

CHS 10

MTL 10

SPG 9.30605

TUR 2
;
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Minimizing costs 16

One still disappointing aspect of the solution is the need to buy 5.36061
packages of beef and 9.30605 of spaghetti. How can we find the best
possible solution in terms of whole packages? Rounding optimal values to
whole numbers is not so easy to do in a feasible way. Using AMPL we can
observe that it will violate the sodium limit:
ampl: let Buy[”BEEF”] := 6 ;
ampl: let Buy[”SPG”] := 10 ;
ampl: display Diet.lb, Diet.body, Diet.ub;

: Diet.lb Diet.body Diet.ub :=

A 700 2012 20000

B1 700 1060 20000

B2 700 720 20000

C 700 1730 20000

CAL 16000 20240 24000

NA 0 51522 50000
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Minimizing costs 17

AMPL does provide for putting the integrality restriction directly into the
declaration of the variables:
var Buy {j in FOOD } integer >= f min[j], <= f max[j];
This will only help if we use a solver that can deal with problems whose
variables must be integers – e.g. CPLEX.
ampl: reset;
ampl: model dieti.mod;
ampl: data diet2a.dat;
ampl: option solver cplex;
ampl: solve;
CPLEX 8.0.0: optimal integer solution; objective 119.3
11 MIP simplex iterations
1 branch-and-bound nodes
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Minimizing costs 18

ampl: display Buy;
Buy [ * ] :=

BEEF 9

CHK 2

FISH 2

HAM 8

CHS 10

MTL 10

SPG 7

TUR 2
;
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4. Transportation model
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Transportation model 1

A single good is to be shipped from several origins to several destinations
at minimum overall cost. This problem gives rise to the simplest kind of
linear program for minimum-cost flows. AMPL offers convenient features
for describing network flow models that specify network structure directly.

Suppose that we have decided to produce steel coils at three mill
locations, in the following amounts:

GARY Gary, Indiana 1400
CLEV Cleveland, Ohio 2600
PITT Pittsburgh, Pennsylvania 2900
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Transportation model 2

The total of 6900 tons must be shipped in various amounts to meet orders
at seven locations of automobile factories:

FRA Framingham, Massachusetts 900
DET Detroit, Michigan 1200
LAN Lansing, Michigan 600
WIN Windsor, Ontario 400
STL St. Louis, Missouri 1700
FRE Fremont, California 1100
LAF Lafayette, Indiana 1000
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Transportation model 3

We now have an optimization problem: What is the least expensive plan
for shipping the coils from mills to plants?
To answer the question, we need a table of shipping costs per ton:

GARY CLEV PITT
FRA 39 27 24
DET 14 9 14
LAN 11 12 17
WIN 14 9 13
STL 16 26 28
FRE 82 95 99
LAF 8 17 02
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Transportation model 4

Let GARY:FRA be the number of tons to be shipped from GARY to FRA, and
similarly for other city pairs. Then the objective can be written as follows:

Minimize
39*GARY:FRA + 27*CLEV:FRA + 24*PITT:FRA +
14*GARY:DET + 9*CLEV:DET + 14*PITT:DET +
11*GARY:LAN + 12*CLEV:LAN + 17*PITT:LAN +
14*GARY:WIN + 9*CLEV:WIN + 13*PITT:WIN +
16*GARY:STL + 26*CLEV:STL + 28*PITT:STL +
82*GARY:FRE + 95*CLEV:FRE + 99*PITT:FRE +
8*GARY:LAF + 17*CLEV:LAF + 20*PITT:LAF

There are 21 decision variables in all.
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Transportation model 5

We need to add constraint that the sum of the shipments from GARY to the
seven factories is equal to the production level of 1400:

GARY:FRA + GARY:DET + GARY:LAN + GARY:WIN +
GARY:STL + GARY:FRE + GARY:LAF = 1400

and analogously for the other two mills.
There also have to be constraints like these at the factories, to ensure that
the amounts shipped equal the amounts ordered:

GARY:FRA + CLEV:FRA + PITT:FRA = 900

and similarly for the other six factories.
We have ten constraints in all. If we add the requirement that all variables
be nonnegative, we have a complete linear program for the transportation
problem.
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Transportation model 6

A general transportation model – transp.mod
set ORIG; # origins
set DEST; # destinations
param supply {ORIG} >= 0;
# amounts available at origins
param demand {DEST} >= 0;
# amounts required at destinations
check: sum {i in ORIG }

supply[i] = sum {j in DEST } demand[j];
# test to issue an error message if it is violated
param cost {ORIG, DEST} >= 0; # shipment costs per unit
var Trans {ORIG, DEST} >= 0; # units to be shipped
minimize Total Cost:

sum {i in ORIG, j in DEST } cost[i,j] * Trans[i,j];
subject to Supply {i in ORIG }:

sum {j in DEST } Trans[i,j] = supply[i];
subject to Demand {j in DEST }:

sum {i in ORIG } Trans[i,j] = demand[j];
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Transportation model 7

Data for transportation model – transp.dat
# defines set "ORIG" and param "supply"

param: ORIG: supply :=

GARY 1400

CLEV 2600

PITT 2900 ;
# defines set "DEST" and param "demand"

param: DEST: demand :=

FRA 900

DET 1200

LAN 600

WIN 400

STL 1700

FRE 1100

LAF 1000 ;
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Transportation model 8

param cost:

FRA DET LAN WIN STL FRE LAF :=

GARY 39 14 11 14 16 82 8

CLEV 27 9 12 9 26 95 17

PITT 24 14 17 13 28 99 20 ;

Now we can solve the linear program and examine the output.



PANM 15, 2010 L.Lukšan, C.Matonoha, J.Vlček: AMPL - 52

Transportation model 9

ampl: model transp.mod;
ampl: data transp.dat;
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 196200
12 dual simplex iterations (0 in phase I)
ampl: display Trans;
Trans [ * , * ] (tr)

: CLEV GARY PITT :=

DET 1200 0 0

FRA 0 0 900

FRE 0 1100 0

LAF 400 300 300

LAN 600 0 0

STL 0 0 1700

WIN 400 0 0
;
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Transportation model 10

We see that most destinations are supplied from a single mill, but CLEV,
GARY and PITT all to LAF.
It is instructive to compare this solution with another solver, SNOPT:
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Transportation model 11

ampl: option solver snopt;
ampl: solve;
SNOPT 6.1-1: optimal solution found.
15 iterations, objective 196200
ampl: display Trans;
Trans [ * , * ] (tr)

: CLEV GARY PITT :=

DET 1200 0 0

FRA 0 0 900

FRE 0 1100 0

LAF 400 0 600

LAN 600 0 0

STL 0 300 1400

WIN 400 0 0
;
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Transportation model 12

The minimum cost is still 196200, but it is achieved in a different way.
Alternative optimal solutions such as these are often exhibited by
transportation problems, particularly when the coefficients in the objective
function are round numbers.
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5. Solvers
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MINOS

● Bruce A. Murtagh, Michael A. Saunders (Stanford Business Software)
● For mathematical programs that are nonlinear in the objective but linear

in the constraints, it employs a reduced gradient approach, which can
be viewed as a generalization of the simplex algorithm.

● To deal with nonlinear constraints, MINOS further generalizes its
algorithm by means of a projected Lagrangian approach.

● http://www.sbsi-sol-optimize.com/asp/sol_product_minos.htm
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CPLEX

● David M. Gay (IBM)
● Designed to solve integer, mixed-integer, linear programming, and

quadratic problems, including problems with quadratic constraints
possibly involving integer variables.

● It does not solve general (non-QP) nonlinear programs.
● http://www-01.ibm.com/software/integration/optimization/cplex-

optimizer/
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SNOPT

● Philip E. Gill, Walter Murray, Michael A. Saunders (Stanford Business
Software)

● It minimizes a linear or nonlinear function subject to bounds on the
variables and sparse linear or nonlinear constraints. It is suitable for
large-scale linear and quadratic programming and for linearly
constrained optimization, as well as for general nonlinear programs.

● It uses a sequential quadratic programming (SQP) algorithm. Search
directions are obtained from QP subproblems that minimize a quadratic
model of the Lagrangian function subject to linearized constraints. An
augmented Lagrangian merit function is reduced along each search
direction to ensure convergence from any starting point.

● http://www.sbsi-sol-optimize.com/asp/sol_product_snopt.htm
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LOQO

● Robert J. Vanderbei (Princeton university)
● A system for solving smooth constrained optimization problems.
● The problems can be linear or nonlinear, convex or nonconvex,

constrained or unconstrained. The only real restriction is that the
functions defining the problem be smooth.

● It is based on an infeasible, primal-dual, interior-point method applied to
a sequence of quadratic approximations to the given problem.

● http://www.princeton.edu/˜rvdb/
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IPOPT

● Carl Laird, Andreas Waechter (The COmputational INfrastructure for
Operations Research)

● A software package for large-scale nonlinear optimization.
● It implements an interior point line search filter method that aims to find

a local solution.
● https://projects.coin-or.org/Ipopt
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KNITRO

● Jorge Nocedal et al. (Ziena Optimization, inc.)
● A solver for nonlinear optimization.
● It is designed for large problems with dimensions running into the

hundred thousands. It is effective for solving linear, quadratic, and
nonlinear smooth optimization problems, both convex and nonconvex. It
is also effective for nonlinear regression, problems with complementarity
constraints (MPCCs or MPECs), and mixed-integer programming
(MIPs), particular convex mixed integer, nonlinear problems (MINLP).

● It provides 3 state-of-the-art algorithms/solvers for solving problems:
Interior-point direct algorithm, Interior-point CG algorithm, Active set
algorithm.

● http://www.ziena.com/knitro.htm
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DONLP2

● Peter Spellucci (TU Darmstadt)
● Minimization of a (in general nonlinear) differentiable real function

subject to (in general nonlinear) inequality and equality constraints.
● The method implemented is a sequential equality constrained quadratic

programming method (with an active set technique) with an alternative
usage of a fully regularized mixed constrained subproblem in case of
nonregular constraints (i.e. linear dependent gradients in the "working
set").

● http://www.mathematik.tu-
darmstadt.de/fbereiche/numerik/staff/spellucci/DONLP2/
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NPSOL

● Philip E. Gill, Walter Murray, Michael A. Saunders, Margaret H. Wright
(Stanford Business Software)

● Software package for solving constrained optimization problems
(nonlinear programs).

● It employs a dense SQP algorithm and is especially effective for
nonlinear problems whose functions and gradients are expensive to
evaluate.

● http://www.sbsi-sol-optimize.com/asp/sol_product_npsol.htm
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PENNON

● Michal Kočvara, Michael Stingl (University of Erlangen)
● Optimization problems with nonlinear objective subject to nonlinear

inequalities and equalities as constraints.
● The algorithm is based on a choice of penalty/barrier function that

penalizes the inequality constraints and combines ideas of the (exterior)
penalty and (interior) barrier methods with the Augmented Lagrangian
method.

● http://www2.am.uni-erlangen.de/˜kocvara/pennon/
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TRON

● Chih-Jen Lin, Jorge Moré (Argonne National Laboratory)
● A trust region Newton method for the solution of large

bound-constrained optimization problems.
● It uses a gradient projection method to generate a Cauchy step, a

preconditioned conjugate gradient method with an incomplete Cholesky
factorization to generate a direction, and a projected search to compute
the step.

● http://www.mcs.anl.gov/˜more/tron/index.html
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6. Rosenbrock function
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Rosenbrock function 1

min
x∈Rn

n
∑

i=2

(

100(x2
i−1 − xi)

2 + (xi−1 − 1)2
)

where n = 100 and initial

x(0) = (−1.2, 1.0,−1.2, 1.0, . . .)T
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Rosenbrock function 2

AMPL code, file Rosf.mod:
param n := 100;
var x {1..n };
minimize f:

sum {i in 2..n }
(100 * (x[i-1]ˆ2-x[i])ˆ2 + (x[i-1]-1)ˆ2)

;
let {i in 1..n } x[i] :=

( if i mod 2 = 1 then -1.2 else 1.0 );
#option solver minos / loqo / snopt / knitroampl;
option log file "E: \Ampl\Rosf.out";
solve;
display f;
display x;
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Rosenbrock function 3

Typing
ampl: model Rosf.mod;

yields the results:

solver objective iterations obj grad

MINOS 3.986623854 647 1553 1552
LOQO 3.986623854 167 352 -
KNITRO 3.98662385430113e+000 156 182 157
SNOPT 5.453988203e-12 867 691 690
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Rosenbrock function 4 - MINOS

MINOS 5.5: optimal solution found.
647 iterations, objective 3.986623854
Nonlin evals: obj = 1553, grad = 1552.
f = 3.98662
x [ * ] :=

1 -0.993286 21 1 41 1 61 1 81 1

2 0.996651 22 1 42 1 62 1 82 1

3 0.998330 23 1 43 1 63 1 83 1

4 0.999168 24 1 44 1 64 1 84 1

5 0.999585 25 1 45 1 65 1 85 1
...
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Rosenbrock function 5 - LOQO

LOQO 6.01: optimal solution (167 iterations, 352
evaluations)
primal objective 3.986623854
dual objective 3.98662378
f = 3.98662
x [ * ] :=

1 -0.993286 21 1 41 1 61 1 81 1

2 0.996651 22 1 42 1 62 1 82 1

3 0.998330 23 1 43 1 63 1 83 1

4 0.999168 24 1 44 1 64 1 84 1

5 0.999585 25 1 45 1 65 1 85 1
...
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Rosenbrock function 6 - KNITRO

KNITRO 5.2.0:
=================================================== ====

Academic Ziena License (NOT FOR COMMERCIAL USE)
KNITRO 5.2.0

Ziena Optimization, Inc.
website: www.ziena.com
email: info@ziena.com

=================================================== ====
The problem is identified as unconstrained.
...
EXIT: Locally optimal solution found.
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Rosenbrock function 7 - KNITRO

Final Statistics
----------------

Final objective value = 3.98662385430113e+000

Final feas. error (abs/rel) = 0.00e+000 / 0.00e+000

Final opt. error (abs/rel) = 6.65e-008 / 6.65e-008

# of iterations = 156

# of CG iterations = 33

# of function evaluations = 182

# of gradient evaluations = 157

# of Hessian evaluations = 156

Total program time (secs) = 0.033 (0.031 CPU time)

Time spent in evals. (secs) = 0.012
=================================================== ====
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Rosenbrock function 8 - KNITRO

Locally optimal solution.
objective 3.986623854; feasibility error 0
156 major iterations; 182 function evaluations
f = 3.98662
x [ * ] :=

1 -0.993286 21 1 41 1 61 1 81 1

2 0.996651 22 1 42 1 62 1 82 1

3 0.998330 23 1 43 1 63 1 83 1

4 0.999168 24 1 44 1 64 1 84 1

5 0.999585 25 1 45 1 65 1 85 1
...
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Rosenbrock function 9 - SNOPT

SNOPT 6.1-1: Optimal solution found.
867 iterations, objective 5.453988203e-12
Nonlin evals: obj = 691, grad = 690.
f = 5.45399e-12
x [ * ] :=

1 1 21 1 41 1 61 1 81 1

2 1 22 1 42 1 62 1 82 1

3 1 23 1 43 1 63 1 83 1

4 1 24 1 44 1 64 1 84 1

5 1 25 1 45 1 65 1 85 1
...
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7. Conclusion
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Conclusion

● AMPL is a language for large-scale optimization and mathematical
programming problems in production, distribution, blending, scheduling,
and many other applications.

● Combining familiar algebraic notation and a powerful interactive
command environment, it makes it easy to create models, use a wide
variety of solvers, and examine solutions.

● Though flexible and convenient for rapid prototyping and development
of models, it also offers the speed and generality needed for repeated
large-scale production runs.

● Free versions of AMPL and several solvers for experiment, evaluation,
and education that run on Windows, Unix/Linux, and Mac OS X can be
downloaded from

www.ampl.com
This web site also lists vendors of the commercial version of AMPL and
a variety of solvers.
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