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1 Introduction

The photosynthetic microorganism growth description is usually based on the so-called microbial
kinetics, i.e. on the lumped parameter models (LPM) describing the photosynthetic response
in small cultivation systems with a homogeneous light distribution [3, 6]. However, there is an
important phenomenon, the so-called flashing light enhancement, which demands some other
model than it residing in the artificial connection between the steady state kinetic model and
the empiric one describing the photosynthetic productivity under fluctuating light condition.
Nevertheless, even having an adequate dynamical LPM of microorganism growth, see e.g. phe-
nomenological model of so-called photosynthetic factory [4, 5], another serious difficulty resides
in the description of the microalgal growth in a photobioreactor (PBR), i.e. in a distributed
parameter system.

In order to develop the distributed parameter model (DPM) of a microorganism growth, two
main approaches for transport and bioreaction processes modelling are usually chosen: (i) Eu-
lerian infinitesimal, and (ii) Eulerian multicompartmental. While the Eulerian infinitesimal
approach, leading to the partial differential equations (PDE), is an usual way to describe trans-
port and reaction systems, the multicompartmental modelling framework, resulting in a system
of ordinary differential equations (ODE), is mostly used in the process engineering area. This
second approach, based on balance equation among compartments with finite control volume,
has been recently treated by Bezzo et al. [2]. The authors presented there a rigorous mathe-
matical framework for constructing hybrid multicompartment/CFD models. Hybrid there means
that the fluid flow description is resolved by a CFD code, and does not make a part of the ODE
system of governing equations.

In the sequel, we adopt the first approach aiming to clarify in an analytical manner the role of
hydrodynamic mixing, or more precisely, the mechanism of the photosynthetic microorganism
growth enhancement due to the microbial cell transport by radial dispersion. Nevertheless,
in the future work, our results should serve to develop a numerical scheme for setting up the
optimal compartment size in the multicompartment/CFD models.

2 Model development

Accordingly to [7], the transport equation for microbial cells (concentration or cell density ¢) as
the function of spatial coordinates and time gets the next form:
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where R is the source term (representing microbial growth, unit: cell m~3s™!), ¥ represents the

velocity field, and D, is the dispersion coefficient, which corresponds to diffusion coefficient in



microstructure description and becomes mere empirical parameter suitably describing mixing
in the system. D, is influenced by the molecular diffusion and velocity profile. When mixing is
mainly caused by the turbulent micro-eddies, the phenomenon is called the turbulent diffusion
and a turbulent diffusion coefficient is introduced e.g. in [1]. The reaction obviously depends
on some variables, usually called as substrates. For our special case of photosynthetic growth
in a PBR, the role of only one limiting substrate (the nutrients are supposed to be present in
a sufficient amount, i.e. they do not limit the growth) fulfills the irradiance, in other words,
an external forcing input u. Moreover we suppose the rectangular PBR geometry illuminated
from one side, i.e. the irradiance level is decreasing from the PBR wall to PBR core. Thus, the
PBR volume (our computational domain) can be divided into layers with the same irradiance
level, transforming the 3D problem into the one-dimensional. Consequently, the description of
cell motion in direction of light gradient, i.e. perpendicular to PBR wall and at the same time
perpendicular to the direction of convective flow, is of most interest. This motion is caused by
the just mentioned turbulent diffusion. Furthermore, we can introduce the dimensionless spatial
coordinate x by r := xL, where L is the the PBR length in direction of light gradient, and the
dimensionless dispersion coefficient p(x) by D, := p(z) Dy, where Dy is a constant with some
characteristic value, unit: m?s~!'. Furthermore we introduce the dimensionless concentrations
as Y 1= .=, Yss = 2, where ¢y, is a characteristic (e.g. maximal) concentration of c.

[

Based on photosynthetic factory model [4, 5] we have for the reaction term R the relation
R=—k (c—css) (2)

where k is the rate (unit: s~!) associated with the dynamic process by which is the concentration
approaching to some value css depending only on the external input u.

As we are interested on the steady state solution of (1), i.e. % = 0, we obtain
— [p@)y] +a@) y = a@) yss, ¥'(0)=0, y'(1)=0, (3)
where ¢(x) := W.

If we define kg as follows: k := k4 (u(z)) ko, then the characteristic number, so-called Damkdhler
number of second type, could be defined as Dajy := k%)—LQ, and the the dependence of the solution

of (3) on Dajr could be studied. ’

3 Analytical solution

In fact, we do not need the solution of equation (3) in form y = y(x), but we want to find the
mean value of y in the interval z € [0.1], i.e. to compute the expression fol y(x) dz. Based on [8],
the boundary value problem is transformed into the related initial value problem. It consists in
finding solutions of two homogeneous equations, two differential equations with the right-hand
side and computing a solution of a system of two algebraic equations. The result is that we obtain
a function value and its derivative in an arbitrary point. The original differential equation with
boundary conditions is thus transformed into a differential equation with an initial condition. As
we need only a solution in several points, we can apply the above procedure repeatedly. Finally,
the value fol y(x) dzx is obtained by a suitable numerical method.



4 Conclusion

An analytical study of the effect of hydrodynamic mixing on the photosynthetic microorganism
growth is presented. The spatio-temporal dependence of microorganism cell concentration in
our system of interest, i.e. in the photobioreactor (PBR), is reduced into a one-dimensional
problem described by the second-order non-homogeneous ordinary differential equation with the
non-linear continuous function on the right hand side. The impermeability of the PBR’s walls
imposes the Neumann boundary condition. The related initial value method is applied, and for
a special case of forcing input and for the special right hand side (Haldane type kinetics), the
resulting dependence of the PBR productivity (the average value of steady-state concentration)
on hydrodynamic mixing is determined.
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