Interior-point method for nonlinear nonconvex optimization

Ladislav Lukšan, Ctirad Matonoha, Jan Vlček

Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodárenskou věží 2, 182 07 Prague 8, Czech Republic

Modelling 2009

June 22 - 26, 2009, Rožnov pod Radhoštěm, Czech Republic

Ladislav Lukšan, Ctirad Matonoha, Jan Vlček Interior-point method for nonlinear nonconvex optimization

3 Trust-region subproblem

- 2 Direction determination
- 3 Trust-region subproblem
- 4 Step-length selection
- 5 Numerical experiments

General nonlinear programming problem

Consider the general nonlinear programming problem

(NP)
$$x = \arg\min_{x\in\mathcal{R}^n} f(x)$$
 s.t. $c_I(x) \le 0$, $c_E(x) = 0$,

where

$$c_{I}(x) = [c_{i}(x) : i \in I]^{T}, \qquad I = \{1, \dots, m_{I}\}$$

$$c_{E}(x) = [c_{i}(x) : i \in E]^{T}, \qquad E = \{m_{I} + 1, \dots, m_{I} + m_{E} = m\}.$$

General nonlinear programming problem

Consider the general nonlinear programming problem

(NP)
$$x = \arg\min_{x\in\mathcal{R}^n} f(x)$$
 s.t. $c_I(x) \le 0$, $c_E(x) = 0$,

where

$$c_{I}(x) = [c_{i}(x) : i \in I]^{T}, \qquad I = \{1, \dots, m_{I}\}$$

$$c_{E}(x) = [c_{i}(x) : i \in E]^{T}, \qquad E = \{m_{I} + 1, \dots, m_{I} + m_{E} = m\}.$$

We assume that the functions

$$f(x): \mathcal{R}^n \to \mathcal{R}, \quad c_I(x): \mathcal{R}^n \to \mathcal{R}^{m_I}, \quad c_E(x): \mathcal{R}^n \to \mathcal{R}^{m_E}$$

are twice continuously differentiable.

General nonlinear programming problem

Consider the general nonlinear programming problem

(NP)
$$x = \arg\min_{x\in\mathcal{R}^n} f(x)$$
 s.t. $c_I(x) \le 0$, $c_E(x) = 0$,

where

$$c_{I}(x) = [c_{i}(x) : i \in I]^{T}, \qquad I = \{1, \dots, m_{I}\}$$

$$c_{E}(x) = [c_{i}(x) : i \in E]^{T}, \qquad E = \{m_{I} + 1, \dots, m_{I} + m_{E} = m\}.$$

We assume that the functions

$$f(x): \mathcal{R}^n \to \mathcal{R}, \quad c_I(x): \mathcal{R}^n \to \mathcal{R}^{m_I}, \quad c_E(x): \mathcal{R}^n \to \mathcal{R}^{m_E}$$

are twice continuously differentiable.

Difficulty

This problem is hard to solve due to the presence of inequality constraints.

Ladislav Lukšan, Ctirad Matonoha, Jan Vlček Interior-point method for nonlinear nonconvex optimization

We introduce a slack vector

$$s \equiv s_I = [s_i(x) : i \in I]^T$$

and transform original problem (NP) to the sequence of problems with the logarithmic barrier function

(IP)
$$x = \arg \min_{(x,s_l) \in \mathcal{R}^{n+m_l}} \left(F(x,s) \equiv f(x) - \mu e^T \ln(S_l) e \right)$$

subject to

$$c(x,s) \equiv [c_I(x) + s_I, c_E(x)] = 0$$

where

We introduce a slack vector

$$s \equiv s_I = [s_i(x) : i \in I]^T$$

and transform original problem (NP) to the sequence of problems with the logarithmic barrier function

(IP)
$$x = \arg \min_{(x,s_l) \in \mathcal{R}^{n+m_l}} \left(F(x,s) \equiv f(x) - \mu e^T \ln(S_l) e \right)$$

subject to

$$c(x,s) \equiv [c_I(x) + s_I, c_E(x)] = 0$$

where

- $\mu > 0$ is a barrier parameter, $\mu \rightarrow 0$ is assumed
- *e* is the vector with unit elements

•
$$S_I = \operatorname{diag}(s_i : i \in I)$$

Let

$$\mathcal{L}(x, s, u_I, u_E) = F(x, s) + u^T c(x, s)$$

= $f(x) - \mu e^T \ln(S_I) e + u_I^T (c_I(x) + s_I) + u_E^T c_E(x)$

be a Lagrange function of (IP) with Lagrange multipliers $u = [u_I, u_E]$. Then the necessary KKT conditions for the solution of problem (IP) have the following form (primal-dual formulation):

Let

$$\mathcal{L}(x, s, u_I, u_E) = F(x, s) + u^T c(x, s) = f(x) - \mu e^T \ln(S_I) e + u_I^T (c_I(x) + s_I) + u_E^T c_E(x)$$

be a Lagrange function of (IP) with Lagrange multipliers $u = [u_I, u_E]$. Then the necessary KKT conditions for the solution of problem (IP) have the following form (primal-dual formulation):

$$\partial \mathcal{L}/\partial x = g(x, u) = 0,$$

$$\partial \mathcal{L}/\partial s = S_I U_I e - \mu e = 0,$$
 (1)

$$\partial \mathcal{L}/\partial u_I = c_I(x) + s_I = 0,$$

$$\partial \mathcal{L}/\partial u_E = c_E(x) = 0,$$

where

$$g(x, u) = \nabla f(x) + A_I(x)u_I + A_E(x)u_E,$$

$$A_I(x) = [\nabla c_i(x) : i \in I], \qquad A_E(x) = [\nabla c_i(x) : i \in E],$$

$$S_I = \operatorname{diag}(s_i : i \in I) \succ 0, \qquad U_I = \operatorname{diag}(u_i : i \in I) \succ 0.$$

The Newton method

Linearizing the primal-dual equations, we get one step of the Newton method

$$\begin{bmatrix} G_{\mathsf{x}} & 0 & A_{I} & A_{E} \\ 0 & U_{I} & S_{I} & 0 \\ A_{I}^{\mathsf{T}} & I & 0 & 0 \\ A_{E}^{\mathsf{T}} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} d_{\mathsf{x}} \\ d_{\mathsf{s}} \\ d_{\mathsf{u}_{l}} \\ d_{\mathsf{u}_{E}} \end{bmatrix} = -\begin{bmatrix} g_{\mathsf{x}} \\ S_{I} U_{I} e - \mu e \\ c_{I} + s_{I} \\ c_{E} \end{bmatrix}, \quad (2)$$

where $d_x, d_s, d_{u_l}, d_{u_E}$ are direction vectors and

$$g_x = g(x, u) = \nabla f(x) + A_I(x)u_I + A_E(x)u_E$$
$$G_x = G(x, u) = \nabla^2 f(x) + \sum_{i \in I \cup E} u_i \nabla^2 c_i(x)$$

The Newton method

Linearizing the primal-dual equations, we get one step of the Newton method

$$\begin{bmatrix} G_{\mathsf{x}} & 0 & A_{I} & A_{E} \\ 0 & U_{I} & S_{I} & 0 \\ A_{I}^{\mathsf{T}} & I & 0 & 0 \\ A_{E}^{\mathsf{T}} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} d_{\mathsf{x}} \\ d_{\mathsf{s}} \\ d_{\mathsf{u}_{l}} \\ d_{\mathsf{u}_{E}} \end{bmatrix} = -\begin{bmatrix} g_{\mathsf{x}} \\ S_{I} U_{I} e - \mu e \\ c_{I} + s_{I} \\ c_{E} \end{bmatrix}, \quad (2)$$

where $d_x, d_s, d_{u_l}, d_{u_E}$ are direction vectors and

$$g_x = g(x, u) = \nabla f(x) + A_I(x)u_I + A_E(x)u_E$$
$$G_x = G(x, u) = \nabla^2 f(x) + \sum_{i \in I \cup E} u_i \nabla^2 c_i(x)$$

- The Hessian matrix G(x, u) is not usually given analytically, but automatic or numerical differentiation is used instead.
- We assume that the matrix of system (2) is nonsingular.

Description of the algorithm

The algorithm for an interior point method can be roughly described in the following form.

Let vectors

 $x \in \mathcal{R}^n$, $0 < s_I \in \mathcal{R}^{m_I}$, $0 < u_I \in \mathcal{R}^{m_I}$, $u_E \in \mathcal{R}^{m_E}$

and a barrier parameter $\mu > 0$ be given.

Let vectors

 $x \in \mathcal{R}^n$, $0 < s_I \in \mathcal{R}^{m_I}$, $0 < u_I \in \mathcal{R}^{m_I}$, $u_E \in \mathcal{R}^{m_E}$

and a barrier parameter $\mu > 0$ be given.

2 Determine direction vectors $d_x, d_s, d_{u_I}, d_{u_E}$ satisfying (2).

$$\begin{bmatrix} G_{x} & 0 & A_{I} & A_{E} \\ 0 & U_{I} & S_{I} & 0 \\ A_{I}^{T} & I & 0 & 0 \\ A_{E}^{T} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} d_{x} \\ d_{s} \\ d_{u_{I}} \\ d_{u_{E}} \end{bmatrix} = -\begin{bmatrix} g_{x} \\ S_{I}U_{I}e - \mu e \\ c_{I} + s_{I} \\ c_{E} \end{bmatrix}$$

Let vectors

 $x \in \mathcal{R}^n$, $0 < s_I \in \mathcal{R}^{m_I}$, $0 < u_I \in \mathcal{R}^{m_I}$, $u_E \in \mathcal{R}^{m_E}$

and a barrier parameter $\mu > 0$ be given.

- **2** Determine direction vectors $d_x, d_s, d_{u_l}, d_{u_E}$ satisfying (2).
- Solution Choose a suitable step-length $0 < \alpha \leq \overline{\alpha}$.

Let vectors

 $x \in \mathcal{R}^n$, $0 < s_I \in \mathcal{R}^{m_I}$, $0 < u_I \in \mathcal{R}^{m_I}$, $u_E \in \mathcal{R}^{m_E}$

and a barrier parameter $\mu > 0$ be given.

- **2** Determine direction vectors $d_x, d_s, d_{u_l}, d_{u_E}$ satisfying (2).
- Solution Choose a suitable step-length $0 < \alpha \leq \overline{\alpha}$.
- Set new iterations

$$x := x + \alpha d_x, \quad s_I := s_I(\alpha, d_s) > 0,$$

$$u_I := u_I(\alpha, d_{u_I}) > 0, \quad u_E := u_E + \alpha d_{u_E},$$

and determine a new barrier parameter $\mu > 0$.

Let vectors

 $x \in \mathcal{R}^n$, $0 < s_I \in \mathcal{R}^{m_I}$, $0 < u_I \in \mathcal{R}^{m_I}$, $u_E \in \mathcal{R}^{m_E}$

and a barrier parameter $\mu > 0$ be given.

- 2 Determine direction vectors $d_x, d_s, d_{u_l}, d_{u_E}$ satisfying (2).
- Solution Choose a suitable step-length $0 < \alpha \leq \overline{\alpha}$.
- Set new iterations

$$x := x + \alpha d_x, \quad s_I := s_I(\alpha, d_s) > 0,$$

$$u_I := u_I(\alpha, d_{u_I}) > 0, \quad u_E := u_E + \alpha d_{u_E},$$

and determine a new barrier parameter $\mu > 0$.

Termination is when the KKT conditions are fulfiled.

1 Introduction

3 Trust-region subproblem

4 Step-length selection

5 Numerical experiments

KKT condition (1) implies that $S_I U_I e \approx \mu e$ and if $\mu \to 0$, then either $u_i \to 0$ or $s_i \to 0$ holds for every index $i \in I$. We split the set of inequality constraints to an active and inactive subsets. KKT condition (1) implies that $S_I U_I e \approx \mu e$ and if $\mu \to 0$, then either $u_i \to 0$ or $s_i \to 0$ holds for every index $i \in I$. We split the set of inequality constraints to an active and inactive subsets.

Active constraints

Are those for which $c_i(x)$, $i \in I$, are close to zero:

- $s_i \leq \varepsilon_I u_i, i \in I$,
- they are denoted by $\hat{.}$, i.e. $\hat{c}_l(x), \hat{s}_l, \hat{u}_l$, where $\hat{c}_l \in \mathcal{R}^{\hat{m}_l}$.

KKT condition (1) implies that $S_I U_I e \approx \mu e$ and if $\mu \to 0$, then either $u_i \to 0$ or $s_i \to 0$ holds for every index $i \in I$. We split the set of inequality constraints to an active and inactive subsets.

Active constraints

Are those for which $c_i(x)$, $i \in I$, are close to zero:

- $s_i \leq \varepsilon_I u_i, i \in I$,
- they are denoted by $\hat{\cdot}$, i.e. $\hat{c}_l(x), \hat{s}_l, \hat{u}_l$, where $\hat{c}_l \in \mathcal{R}^{\hat{m}_l}$.

Inactive constraints

Are those for which u_i , $i \in I$, are close to zero:

- $s_i > \varepsilon_I u_i, i \in I$,
- they are denoted by $\check{}$, i.e. $\check{c}_I(x), \check{s}_I, \check{u}_I$, where $\check{u}_I \in \mathcal{R}^{\check{m}_I}$.

Here $\varepsilon_l > 0$ is a suitable parameter and $\hat{m}_l + \check{m}_l = m_l$.

original system (2)

$$\begin{bmatrix} G_{x} & 0 & A_{I} & A_{E} \\ 0 & U_{I} & S_{I} & 0 \\ A_{I}^{T} & I & 0 & 0 \\ A_{E}^{T} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} d_{x} \\ d_{s} \\ d_{u_{I}} \\ d_{u_{E}} \end{bmatrix} = - \begin{bmatrix} g_{x} \\ S_{I}U_{I}e - \mu e \\ c_{I} + s_{I} \\ c_{E} \end{bmatrix},$$

symmetrized system

$$\begin{bmatrix} G_{x} & 0 & A_{I} & A_{E} \\ 0 & I & D_{I} & 0 \\ A_{I}^{T} & D_{I} & 0 & 0 \\ A_{E}^{T} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} d_{x} \\ D_{I}^{-1}d_{s} \\ d_{u_{I}} \\ d_{u_{E}} \end{bmatrix} = -\begin{bmatrix} g_{x} \\ D_{I}g_{s} \\ c_{I} + s_{I} \\ c_{E} \end{bmatrix},$$

where

$$D_{I} = (S_{I}U_{I}^{-1})^{1/2}$$

$$D_{I}g_{s} = (S_{I}U_{I})^{1/2}e - \mu(S_{I}U_{I})^{-1/2}e$$

symmetrized system

$$\begin{bmatrix} G_{x} & 0 & A_{I} & A_{E} \\ 0 & I & D_{I} & 0 \\ A_{I}^{T} & D_{I} & 0 & 0 \\ A_{E}^{T} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} d_{x} \\ D_{I}^{-1}d_{s} \\ d_{u_{I}} \\ d_{u_{E}} \end{bmatrix} = - \begin{bmatrix} g_{x} \\ D_{I}g_{s} \\ c_{I} + s_{I} \\ c_{E} \end{bmatrix},$$

where

$$D_{I} = (S_{I}U_{I}^{-1})^{1/2}$$

$$D_{I}g_{s} = (S_{I}U_{I})^{1/2}e - \mu(S_{I}U_{I})^{-1/2}e$$

Disadvantage

Elements of matrix $S_I U_I^{-1}$ can be unbounded since $u_i \rightarrow 0$ if the *i*-th inequality constraint is inactive at the solution point.

Ladislav Lukšan, Ctirad Matonoha, Jan Vlček Interior-point method for nonlinear nonconvex optimization

Inactive equations are eliminated and computed directly afterwards

$$\begin{split} \check{d}_s &= -(\check{c}_I + \check{A}_I^T d_x + \check{s}_I) \\ \check{d}_{u_I} &= \check{S}_I^{-1} \check{U}_I(\check{c}_I + \check{A}_I^T d_x) + \mu \check{S}_I^{-1} \epsilon \end{split}$$

while active parts are computed iteratively from the system

$$\begin{bmatrix} \hat{\mathbf{G}}_{\mathbf{x}} & 0 & \hat{A}_{I} & A_{E} \\ 0 & I & \hat{D}_{I} & 0 \\ \hat{A}_{I}^{T} & \hat{D}_{I} & 0 & 0 \\ A_{E}^{T} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} d_{\mathbf{x}} \\ \hat{D}_{I}^{-1} \hat{d}_{s} \\ \hat{d}_{u_{I}} \\ d_{u_{E}} \end{bmatrix} = -\begin{bmatrix} \hat{\mathbf{g}}_{\mathbf{x}} \\ \hat{D}_{I} \hat{\mathbf{g}}_{s} \\ \hat{c}_{I} + \hat{s}_{I} \\ c_{E} \end{bmatrix}, \quad (3)$$

where

$$\hat{D}_I = (\hat{S}_I \hat{U}_I^{-1})^{1/2}, \quad \hat{D}_I \hat{g}_s = (\hat{S}_I \hat{U}_I)^{1/2} e - \mu (\hat{S}_I \hat{U}_I)^{-1/2} e,$$

 $\hat{G}_x = G_x + \check{A}_I \check{S}_I^{-1} \check{U}_I \check{A}_I^T, \quad \hat{g}_x = g_x + \check{A}_I \check{S}_I^{-1} \check{U}_I \check{c}_I + \mu \check{A}_I \check{S}_I^{-1} e.$

Matrices $\hat{S}_I \hat{U}_I^{-1}$ and \hat{G}_x and vector \hat{g}_x are bounded (if original G_x, g_x , and $[A_I, A_E]$ are bounded) and if the strict complementarity conditions

$$\lim_{\mu\to 0}(s_i+u_i)>0,\quad i\in I,$$

hold (recall that $s_i > 0$, $u_i > 0$ and $s_i \to 0$ or $u_i \to 0$), then

 $\lim_{\mu\to 0} \hat{S}_I \hat{U}_I^{-1} = 0.$

Matrices $\hat{S}_I \hat{U}_I^{-1}$ and \hat{G}_x and vector \hat{g}_x are bounded (if original G_x, g_x , and $[A_I, A_E]$ are bounded) and if the strict complementarity conditions

$$\lim_{\mu\to 0}(s_i+u_i)>0,\quad i\in I,$$

hold (recall that $s_i > 0$, $u_i > 0$ and $s_i \to 0$ or $u_i \to 0$), then

$$\lim_{\mu\to 0} \hat{S}_I \hat{U}_I^{-1} = 0.$$

Similarly, the matrix $\check{S}_I^{-1}\check{U}_I$ is bounded and if the strict complementarity conditions hold, then

 $\lim_{\mu\to 0}\check{S}_I^{-1}\check{U}_I=0.$

$$\begin{bmatrix} \hat{G}_{x} & 0 & \hat{A}_{I} & A_{E} \\ 0 & I & \hat{D}_{I} & 0 \\ \hat{A}_{I}^{T} & \hat{D}_{I} & 0 & 0 \\ A_{E}^{T} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} d_{x} \\ \hat{D}_{I}^{-1} \hat{d}_{s} \\ \hat{d}_{u_{I}} \\ d_{u_{E}} \end{bmatrix} = -\begin{bmatrix} \hat{g}_{x} \\ \hat{D}_{I} \hat{g}_{s} \\ \hat{c}_{I} + \hat{s}_{I} \\ c_{E} \end{bmatrix}$$
$$\begin{bmatrix} B & A \\ A^{T} & 0 \end{bmatrix} \begin{bmatrix} d \\ d_{u} \end{bmatrix} = -\begin{bmatrix} g \\ h \end{bmatrix}$$

 \Leftrightarrow

30

(4)

$$\begin{bmatrix} \hat{G}_{x} & 0 & \hat{A}_{I} & A_{E} \\ 0 & I & \hat{D}_{I} & 0 \\ \hat{A}_{I}^{T} & \hat{D}_{I} & 0 & 0 \\ A_{E}^{T} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} d_{x} \\ \hat{D}_{I}^{-1} \hat{d}_{s} \\ \hat{d}_{u_{I}} \\ d_{u_{E}} \end{bmatrix} = -\begin{bmatrix} \hat{g}_{x} \\ \hat{D}_{I} \hat{g}_{s} \\ \hat{c}_{I} + \hat{s}_{I} \\ c_{E} \end{bmatrix}$$
$$\begin{bmatrix} B & A \\ A^{T} & 0 \end{bmatrix} \begin{bmatrix} d \\ d_{u} \end{bmatrix} = -\begin{bmatrix} g \\ h \end{bmatrix}$$
(4)

 \Leftrightarrow

where

$$B = \begin{bmatrix} \hat{G}_{x} & 0\\ 0 & I \end{bmatrix}, \quad A = \begin{bmatrix} \hat{A}_{I} & A_{E}\\ \hat{D}_{I} & 0 \end{bmatrix}, \quad g = \begin{bmatrix} \hat{g}\\ \hat{D}_{I}\hat{g}_{s} \end{bmatrix}, \quad h = \begin{bmatrix} \hat{c}_{I} + \hat{s}_{I}\\ c_{E} \end{bmatrix},$$
$$d = \begin{bmatrix} d_{x}\\ \hat{D}_{I}^{-1}\hat{d}_{s} \end{bmatrix}, \quad d_{u} = \begin{bmatrix} \hat{d}_{u_{I}}\\ d_{u_{E}} \end{bmatrix}$$

$$\begin{bmatrix} \hat{G}_{x} & 0 & \hat{A}_{I} & A_{E} \\ 0 & I & \hat{D}_{I} & 0 \\ \hat{A}_{I}^{T} & \hat{D}_{I} & 0 & 0 \\ A_{E}^{T} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} d_{x} \\ \hat{D}_{I}^{-1} \hat{d}_{s} \\ \hat{d}_{u_{I}} \\ d_{u_{E}} \end{bmatrix} = - \begin{bmatrix} \hat{g}_{x} \\ \hat{D}_{I} \hat{g}_{s} \\ \hat{c}_{I} + \hat{s}_{I} \\ c_{E} \end{bmatrix}$$

 \Leftrightarrow

$$\begin{bmatrix} B & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} d \\ d_u \end{bmatrix} = - \begin{bmatrix} g \\ h \end{bmatrix}$$
(4)

• Active directions d_x , \hat{d}_s , \hat{d}_{u_I} , d_{u_E} appearing in system (4) are determined either by indefinitely preconditioned conjugate gradient method or by a trust-region approach

32

$$\begin{bmatrix} \hat{G}_{x} & 0 & \hat{A}_{I} & A_{E} \\ 0 & I & \hat{D}_{I} & 0 \\ \hat{A}_{I}^{T} & \hat{D}_{I} & 0 & 0 \\ A_{E}^{T} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} d_{x} \\ \hat{D}_{I}^{-1} \hat{d}_{s} \\ \hat{d}_{u_{I}} \\ d_{u_{E}} \end{bmatrix} = - \begin{bmatrix} \hat{g}_{x} \\ \hat{D}_{I} \hat{g}_{s} \\ \hat{c}_{I} + \hat{s}_{I} \\ c_{E} \end{bmatrix}$$

 \Leftrightarrow

$$\begin{bmatrix} B & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} d \\ d_u \end{bmatrix} = - \begin{bmatrix} g \\ h \end{bmatrix}$$
(4)

- Active directions d_x , \hat{d}_s , \hat{d}_{u_l} , d_{u_E} appearing in system (4) are determined either by indefinitely preconditioned conjugate gradient method or by a trust-region approach
- Inactive directions $\check{d}_s, \check{d}_{u_l}$ are computed directly afterwards

33

1 Introduction

3 Trust-region subproblem

4 Step-length selection

5 Numerical experiments

• Consider the subproblem

min
$$Q(d) = \frac{1}{2} d^T B d + g^T d$$
 s.t. $A^T d + h = 0$ (5)

Introduction

• Consider the subproblem

min
$$Q(d) = \frac{1}{2} d^T B d + g^T d$$
 s.t. $A^T d + h = 0$ (5)

• The Lagrange function has the form

 $\mathcal{L}(d, d_u) = Q(d) + d_u^T (A^T d + h)$

where d_u is a Lagrange multiplier.
Introduction

• Consider the subproblem

min
$$Q(d) = \frac{1}{2} d^T B d + g^T d$$
 s.t. $A^T d + h = 0$ (5)

• The Lagrange function has the form $\mathcal{L}(d, d_{\mu}) = Q(d) + d_{\mu}^{T}(A^{T}d + h)$

where d_u is a Lagrange multiplier.

• The optimality conditions

 $\partial \mathcal{L}/\partial d = 0, \quad \partial \mathcal{L}/\partial d_u = 0$

have exactly form (4).

$$\begin{bmatrix} B & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} d \\ d_u \end{bmatrix} = - \begin{bmatrix} g \\ h \end{bmatrix}$$

• Consider the subproblem

min
$$Q(d) = \frac{1}{2} d^T B d + g^T d$$
 s.t. $A^T d + h = 0$ (5)

• The Lagrange function has the form

 $\mathcal{L}(d, d_u) = Q(d) + d_u^T (A^T d + h)$

where d_u is a Lagrange multiplier.

The optimality conditions

$$\partial \mathcal{L}/\partial d = 0, \quad \partial \mathcal{L}/\partial d_u = 0$$

have exactly form (4).

• We can use a trust region method to (5) with a constraint

 $\|d\| \leq \Delta$

to obtain a direction vector d.

Incompatibility of constraints

As both constraints

$$A^T d + h = 0, \quad \|d\| \le \Delta$$

can be incompatible,

we will use the idea of Byrd and Omojokun, to make both constraints compatible and secure a sufficient decrease of Q(d):

$$d = d_V + d_H$$

First, consider the problem

min $||A^T d + h||$ s.t. $||d|| \le \delta \Delta$

for $0 < \delta < 1$ (e.g. $\delta = 0.8$).

Vertical subproblem

This problem is equivalent to

min
$$Q_V(d) = \frac{1}{2} d^T A A^T d + h^T A^T d$$
 s.t. $\|d\| \le \delta \Delta$

We suppose that A has a full column rank.

$$d_{C} = -\frac{\|Ah\|^{2}}{\|A^{T}Ah\|^{2}}Ah, \qquad d_{N} = -A(A^{T})$$

 $A)^{-1}h$

and since $||d_C|| \le ||d_N||$, we proceed as follows:

$$d_C = -\frac{\|Ah\|^2}{\|A^TAh\|^2}Ah, \qquad d_N =$$

$$d_N = -A(A^T A)^{-1}h$$

and since $\|d_C\| \le \|d_N\|$, we proceed as follows:

• if $||d_C|| \ge \delta \Delta$, then set

$$d_V = \frac{\delta \Delta}{\|d_C\|} \, d_C$$

$$d_C = -\frac{\|Ah\|^2}{\|A^TAh\|^2}Ah, \qquad d_N =$$

$$d_N = -A(A^T A)^{-1}h$$

and since $\|d_C\| \le \|d_N\|$, we proceed as follows:

• if $\|d_C\| \ge \delta \Delta$, then set

$$d_V = \frac{\delta \Delta}{\|d_C\|} \, d_C$$

• if $\|d_N\| \leq \delta \Delta$, then set

 $d_V = d_N$

$$d_{C} = -\frac{\|Ah\|^{2}}{\|A^{T}Ah\|^{2}}Ah, \qquad d_{N} = -A(A^{T}A)^{-1}h$$

and since $\|d_C\| \le \|d_N\|$, we proceed as follows:

• if $||d_C|| \ge \delta \Delta$, then set

$$d_V = \frac{\delta \Delta}{\|d_C\|} \, d_C$$

• if $||d_N|| \leq \delta \Delta$, then set

$$d_V = d_N$$

• in the remaining case $\|d_{\mathcal{C}}\| < \delta \Delta < \|d_{\mathcal{N}}\|$, set

$$d_V = d_C + \kappa (d_N - d_C),$$

where $\kappa > 0$ is chosen so that $\|d_V\| = \delta \Delta$

Horizontal subproblem I.

Reformulation of original subproblem (5):

min $Q_H(d) = 1/2 d^T B d + g^T d$ s.t. $||d|| \leq \Delta$, $A^T d = A^T d_V$

Horizontal subproblem I.

Reformulation of original subproblem (5):

min $Q_H(d) = 1/2 d^T B d + g^T d$ s.t. $\|d\| \leq \Delta$, $A^T d = A^T d_V$

The constraints are compatible ($d = d_V$ satisfies them) and since we require $d = d_V + d_H$, for a solution d_H it follows that

$$A^T d_H = 0, \quad d_H = Z d_Z, \quad d_V^T d_H = 0$$

where the columns of Z form a basis of the null space of A^{T} .

Horizontal subproblem I.

Reformulation of original subproblem (5):

min $Q_H(d) = 1/2 d^T B d + g^T d$ s.t. $\|d\| \leq \Delta$, $A^T d = A^T d_V$

The constraints are compatible ($d = d_V$ satisfies them) and since we require $d = d_V + d_H$, for a solution d_H it follows that

$$A^T d_H = 0, \quad d_H = Z d_Z, \quad d_V^T d_H = 0$$

where the columns of Z form a basis of the null space of A^{T} .

Horizontal subproblem II.

Substitution into Q_H leads to a subproblem for d_Z

min $Q_Z(d) = 1/2 d^T B_Z d + g_Z^T d$ s.t. $||Zd|| \le \Delta_Z$

$$B_Z = Z^T B Z, \quad g_Z = Z^T (B d_V + g), \quad \Delta_Z = \sqrt{\Delta^2 - \|d_V\|^2}$$

The Steihaug-Toint conjugate gradient method

• We use the preconditioned conjugate gradient method with the preconditioner

 $C = Z^T Z$

and include these iterations in original subproblem (5) for $d = d_V + Z d_Z$ with $||d|| \le \Delta$.

The Steihaug-Toint conjugate gradient method

• We use the preconditioned conjugate gradient method with the preconditioner

$$C = Z^T Z$$

and include these iterations in original subproblem (5) for $d = d_V + Z d_Z$ with $||d|| \le \Delta$.

• The use of $d_H = Zd_Z$ leads to multiplication by the matrix $P_Z = Z(Z^TZ)^{-1}Z^T \equiv I - A(A^TA)^{-1}A^T = P_A$

so the matrix Z need not be computed.

The Steihaug-Toint conjugate gradient method

• We use the preconditioned conjugate gradient method with the preconditioner

$$C = Z^T Z$$

and include these iterations in original subproblem (5) for $d = d_V + Z d_Z$ with $||d|| \le \Delta$.

• The use of $d_H = Zd_Z$ leads to multiplication by the matrix $P_Z = Z(Z^TZ)^{-1}Z^T \equiv I - A(A^TA)^{-1}A^T = P_A$

so the matrix Z need not be computed.

 Lagrange multipliers d_u cannot be computed from the CG method. From (4) we have

$$Ad_u = -(g + Bd) \equiv -r$$

where r is a residuum. Thus

$$d_u = -(A^T A)^{-1} A^T r$$

as a solution of a least squares problem.

Iterations for original subproblem (5) have the form

$$\begin{array}{l} \bullet \quad d = d_V, \quad r = Bd + g, \quad d_u = -(A^T A)^{-1} A^T r, \\ \tilde{r} = r + A d_u, \quad p = -\tilde{r} \\ \hline \\ \bullet \quad \eta = p^T B p, \quad \alpha = \frac{r^T \tilde{r}}{\eta}, \quad d^+ = d + \alpha p \\ \hline \\ \bullet \quad r^+ = r + \alpha B d, \quad d_u^+ = -(A^T A)^{-1} A^T r^+, \\ \tilde{r}^+ = r^+ + A d_u^+, \quad \beta = \frac{r^+ T \tilde{r}^+}{r^T \tilde{r}}, \quad p^+ = -\tilde{r}^+ + \beta p \end{array}$$

51

Iterations for original subproblem (5) have the form

1
$$d = d_V, \quad r = Bd + g, \quad d_u = -(A^T A)^{-1} A^T r,$$
 $\tilde{r} = r + Ad_u, \quad p = -\tilde{r}$
 2 $\eta = p^T Bp, \quad \alpha = \frac{r^T \tilde{r}}{\eta}, \quad d^+ = d + \alpha p$
 3 $r^+ = r + \alpha Bd, \quad d_u^+ = -(A^T A)^{-1} A^T r^+,$
 $\tilde{r}^+ = r^+ + Ad_u^+, \quad \beta = \frac{r^+ T \tilde{r}^+}{r^T \tilde{r}}, \quad p^+ = -\tilde{r}^+ + \beta p$

Termination

negative curvature is encountered if $\eta \leq 0$ then $d_{\star} = d + \kappa p$, where $\kappa > 0$ is chosen so that $||d_{\star}|| = \Delta$; $r_{\star} = r + \kappa Bp$, $d_{u\star} = -(A^T A)^{-1} A^T r_{\star}$

Iterations for original subproblem (5) have the form

1
$$d = d_V, \quad r = Bd + g, \quad d_u = -(A^T A)^{-1} A^T r,$$
 $\tilde{r} = r + Ad_u, \quad p = -\tilde{r}$
 2 $\eta = p^T Bp, \quad \alpha = \frac{r^T \tilde{r}}{\eta}, \quad d^+ = d + \alpha p$
 3 $r^+ = r + \alpha Bd, \quad d_u^+ = -(A^T A)^{-1} A^T r^+,$
 $\tilde{r}^+ = r^+ + Ad_u^+, \quad \beta = \frac{r^+ T \tilde{r}}{r^T \tilde{r}}, \quad p^+ = -\tilde{r}^+ + \beta p$

Termination

negative curvature is encountered if $\eta \leq 0$ then $d_{\star} = d + \kappa p$, where $\kappa > 0$ is chosen so that $||d_{\star}|| = \Delta$; $r_{\star} = r + \kappa B p$, $d_{u\star} = -(A^T A)^{-1} A^T r_{\star}$

trust-region constraint is violated if $||d^+|| \ge \Delta$, then as above

Iterations for original subproblem (5) have the form

1
$$d = d_V, \quad r = Bd + g, \quad d_u = -(A^T A)^{-1} A^T r,$$
 $\tilde{r} = r + Ad_u, \quad p = -\tilde{r}$
 2 $\eta = p^T Bp, \quad \alpha = \frac{r^T \tilde{r}}{\eta}, \quad d^+ = d + \alpha p$
 3 $r^+ = r + \alpha Bd, \quad d_u^+ = -(A^T A)^{-1} A^T r^+,$
 $\tilde{r}^+ = r^+ + Ad_u^+, \quad \beta = \frac{r^+ T \tilde{r}}{r^T \tilde{r}}, \quad p^+ = -\tilde{r}^+ + \beta p$

Termination

negative curvature is encountered if $\eta \leq 0$ then $d_{\star} = d + \kappa p$, where $\kappa > 0$ is chosen so that $||d_{\star}|| = \Delta$; $r_{\star} = r + \kappa Bp$, $d_{u\star} = -(A^T A)^{-1} A^T r_{\star}$

trust-region constraint is violated if $||d^+|| \ge \Delta$, then as above unconstrained solution with sufficient precision if $||r^+|| \le \varepsilon ||g||$, then $d_{\star} = d^+$, $d_{u\star} = d_u^+$

1 Introduction

- 2 Direction determination
- 3 Trust-region subproblem
- 4 Step-length selection
- 5 Numerical experiments

Back to the original problem:

$$x = \arg \min_{(x,s_I) \in \mathcal{R}^{n+m_I}} \left(F(x,s) \equiv f(x) - \mu e^T \ln(S_I) e \right)$$

subject to

$$c(x,s) \equiv [c_I(x) + s_I, c_E(x)] = 0$$

with Lagrange multipliers

 $u = [u_I, u_E]$

56

Back to the original problem:

$$x = \arg \min_{(x,s_I) \in \mathcal{R}^{n+m_I}} \left(F(x,s) \equiv f(x) - \mu e^T \ln(S_I) e \right)$$

subject to

$$c(x,s) \equiv [c_I(x) + s_I, c_E(x)] = 0$$

with Lagrange multipliers

$$u = [u_I, u_E]$$

After determination of active components d_x , \hat{d}_s , \hat{d}_{u_l} , d_{u_E} from the Byrd-Omojokun trust-region subproblem we compute inactive components \check{d}_s , \check{d}_{u_l} to obtain the quantities d_s , d_{u_l} .

Now we define

$$x^{+} = x + \alpha_{x}d_{x}, \quad s_{I}^{+} = s_{I} + \alpha_{s}d_{s},$$
$$u_{I}^{+} = u_{I} + \alpha_{u_{I}}d_{u_{I}}, \quad u_{E}^{+} = u_{E} + \alpha_{u_{E}}d_{u_{E}}$$

such that $s_l^+ > 0$ and $u_l^+ > 0$ hold using the bounds $\bar{\alpha}_s$ and $\bar{\alpha}_{u_l}$.

Now we define

$$\begin{aligned} x^{+} &= x + \alpha_{x}d_{x}, \quad s_{l}^{+} = s_{l} + \alpha_{s}d_{s}, \\ u_{l}^{+} &= u_{l} + \alpha_{u_{l}}d_{u_{l}}, \quad u_{E}^{+} = u_{E} + \alpha_{u_{E}}d_{u_{E}} \\ \text{such that } s_{l}^{+} &> 0 \text{ and } u_{l}^{+} &> 0 \text{ hold using the bounds } \bar{\alpha}_{s} \text{ and } \bar{\alpha}_{u_{l}}. \end{aligned}$$
Accepted step
The step x^{+}, s^{+}, u^{+} is accepted if for $\alpha = 1$, where
 $\alpha_{x} = \alpha, \quad \alpha_{s} = \min(\alpha, \bar{\alpha}_{s}), \quad \alpha_{u_{l}} = \min(\alpha, \bar{\alpha}_{u_{l}}), \quad \alpha_{u_{E}} = \alpha \\ \text{we have} \\ F(x^{+}, s^{+}) < F(x, s) \quad \text{or} \quad \|c(x^{+}, s^{+})\| < \|c(x, s)\| \end{aligned}$

Otherwise, the step is rejected ($\alpha_x = \alpha_s = \alpha_{u_l} = \alpha_{u_E} = 0$).

The merit function

To decide if the step is acceptable, we define

• the merit function $P(\alpha)$ with the coefficient $\sigma > 0$:

$$P(\alpha) = F(x + \alpha_x d_x, s + \alpha_s d_s) + (u + d_u)^T c(x + \alpha_x d_x, s + \alpha_s d_s) + \frac{\sigma}{2} \|c(x + \alpha_x d_x, s + \alpha_s d_s)\|^2$$

The merit function

To decide if the step is acceptable, we define

• the merit function $P(\alpha)$ with the coefficient $\sigma > 0$:

$$P(\alpha) = F(x + \alpha_x d_x, s + \alpha_s d_s)$$

+ $(u + d_u)^T c(x + \alpha_x d_x, s + \alpha_s d_s)$
+ $\frac{\sigma}{2} \|c(x + \alpha_x d_x, s + \alpha_s d_s)\|^2$

and its quadratic approximation

$$Q(\alpha) = P(0) + \alpha P'(0) + \frac{\alpha^2}{2} d^T B d$$

61

The merit function

To decide if the step is acceptable, we define

• the merit function $P(\alpha)$ with the coefficient $\sigma > 0$:

$$P(\alpha) = F(x + \alpha_x d_x, s + \alpha_s d_s)$$

+ $(u + d_u)^T c(x + \alpha_x d_x, s + \alpha_s d_s)$
+ $\frac{\sigma}{2} \|c(x + \alpha_x d_x, s + \alpha_s d_s)\|^2$

and its quadratic approximation

$$Q(\alpha) = P(0) + \alpha P'(0) + \frac{\alpha^2}{2} d^T B d$$

We can use another merit function but $P(\alpha)$ has shown to be the best in practical computations.

Actual decrease: defined as P(1) - P(0)Predicted decrease: defined as Q(1) - Q(0)

Theorem

The condition

Q(1) - Q(0) < 0

is necessary for applying the trust-region method. It holds provided

$$\sigma > \frac{\frac{1}{2}d^{\mathsf{T}}Bd + d^{\mathsf{T}}g + d^{\mathsf{T}}Ad_{u}}{-d^{\mathsf{T}}Ac}$$

63

Theorem

The condition

Q(1) - Q(0) < 0

is necessary for applying the trust-region method. It holds provided

$$\sigma > \frac{\frac{1}{2}d^{\mathsf{T}}Bd + d^{\mathsf{T}}g + d^{\mathsf{T}}Ad_{u}}{-d^{\mathsf{T}}Ac}$$

Now we can define the number

$$\varrho = rac{P(1) - P(0)}{Q(1) - Q(0)}$$

64

Theorem

The condition

Q(1) - Q(0) < 0

is necessary for applying the trust-region method. It holds provided

$$\sigma > \frac{\frac{1}{2}d^{\mathsf{T}}Bd + d^{\mathsf{T}}g + d^{\mathsf{T}}Ad_{u}}{-d^{\mathsf{T}}Ac}$$

Now we can define the number

$$\varrho = rac{P(1) - P(0)}{Q(1) - Q(0)}$$

The step is

- :-) accepted if $\varrho > 0$: k-th iteration $\rightsquigarrow (k + 1)$ -st iteration
- :-(rejected if $\varrho \le 0$: choose $\Delta < ||d||$ and compute new direction vectors in the *k*-th iteration

• Update of Δ :

Here $0 < \beta < 1 < \gamma$ and $0 < \varrho < \overline{\varrho} < 1$.

• Update of Δ :

Here $0 < \beta < 1 < \gamma$ and $0 < \underline{\varrho} < \overline{\varrho} < 1$.

• Barrier parameter μ is changed each iteration by a heuristic approach:

$$\mu = \nu \, \frac{s^{\,I} \, u_I}{m_I}$$

where

$$\nu = \frac{1}{10} \min\left\{\frac{1-\omega}{20\omega}, 2\right\}^3 \text{ and } \omega = \frac{\min_{i \in I}\{s_i u_i\}}{s^T u_I/m_I}$$

Interior-point method for nonlinear nonconvex optimization

1 Introduction

- 2 Direction determination
- 3 Trust-region subproblem
- 4 Step-length selection
- 5 Numerical experiments

www.cs.cas.cz/luksan/ufo.html

¹ [L,M,V: Interior point method for non-linear non-convex optimization, NLAA, 2004(11), 431-454]

Ladislav Lukšan, Ctirad Matonoha, Jan Vlček Interior-point method for nonlinear nonconvex optimization

www.cs.cas.cz/luksan/ufo.html

Modifications of 18 test problems for equality constrained minimization are used – subroutine TEST 20

www.cs.cas.cz/luksan/test.html

[L,M,V: Interior point method for non-linear non-convex optimization, NLAA, 2004(11), 431-454

www.cs.cas.cz/luksan/ufo.html

Modifications of 18 test problems for equality constrained minimization are used – subroutine TEST 20

www.cs.cas.cz/luksan/test.html

We have performed numerical comparison of methods for direction determination

[L,M,V: Interior point method for non-linear non-convex optimization, NLAA, 2004(11), 431-454

www.cs.cas.cz/luksan/ufo.html

Modifications of 18 test problems for equality constrained minimization are used – subroutine TEST 20

www.cs.cas.cz/luksan/test.html

We have performed numerical comparison of methods for direction determination

IPCGM indefinitely preconditioned conj. gradient method ¹
applying to system (4)

$$\begin{bmatrix} B & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} d \\ d_u \end{bmatrix} = - \begin{bmatrix} g \\ h \end{bmatrix}$$

[L,M,V: Interior point method for non-linear non-convex optimization, NLAA, 2004(11), 431-454
The methods for constrained optimization are implemented in the interactive system for universal functional optimization UFO

www.cs.cas.cz/luksan/ufo.html

Modifications of 18 test problems for equality constrained minimization are used – subroutine TEST 20

www.cs.cas.cz/luksan/test.html

We have performed numerical comparison of methods for direction determination

IPCGM indefinitely preconditioned conj. gradient method ¹
applying to system (4)

TRM trust-region method applying to subproblem (5)

min
$$Q(d) = \frac{1}{2}d^TBd + g^Td$$
 s.t. $A^Td + h = 0$

[L,M,V: Interior point method for non-linear non-convex optimization, NLAA, 2004(11), 431-454]

The methods for constrained optimization are implemented in the interactive system for universal functional optimization UFO

www.cs.cas.cz/luksan/ufo.html

Modifications of 18 test problems for equality constrained minimization are used – subroutine TEST 20

www.cs.cas.cz/luksan/test.html

We have performed numerical comparison of methods for direction determination

IPCGM indefinitely preconditioned conj. gradient method ¹
applying to system (4)

TRM trust-region method applying to subproblem (5)

All problems have the dimension n = 1000.

[[]L,M,V: Interior point method for non-linear non-convex optimization, NLAA, 2004(11), 431-454]

- Constr. are the constraints used,
- Method is the method for the direction determination used,
- NIT is the total number of iterations,
- NFV is the total number of function evaluations,
- NFG is the total number of gradient evaluations,
- NF is the total number of failures,
- NT is the total number of tuned parameters,
- NB is the total number of better computed examples,
- Time is the total computational time in seconds.

Constr.	Method	NIT	NFV	NFG	NF	NT	NB	Time
$c(x) \geq 0$	IPCGM	695	931	4989	0	7	0	4.67
	TRM	1385	1528	11575	0	10	5	5.94
$c(x) \leq 0$	IPCGM	2196	3147	14023	0	3	2	13.20
	TRM	1798	1872	11782	2	3	0	9.24
$x \ge 0$,	IPCGM	811	1386	6597	0	5	0	6.89
$c(x) \ge 0$	TRM	1255	1378	9073	0	5	1	5.74
$x \leq 0$,	IPCGM	562	833	4149	1	1	1	6.77
$c(x) \leq 0$	TRM	759	828	5501	2	4	0	7.11
$ x \leq 1$,	IPCGM	613	825	4637	0	4	1	4.31
$ c(x) \leq 1$	TRM	1182	1297	8124	1	6	3	9.38

• Trust-region methods are competitive with indefinitely preconditioned conjugate gradient method for direction determination in constrained optimization.

- Trust-region methods are competitive with indefinitely preconditioned conjugate gradient method for direction determination in constrained optimization.
- Better procedures must be developed to overcome problems with incompatibility of constraints.

- Trust-region methods are competitive with indefinitely preconditioned conjugate gradient method for direction determination in constrained optimization.
- Better procedures must be developed to overcome problems with incompatibility of constraints.
- A very important part is a suitable choice of the merit function to decide if the step is feasible (new approaches: filter technique, trust-funnel algorithm).

- Trust-region methods are competitive with indefinitely preconditioned conjugate gradient method for direction determination in constrained optimization.
- Better procedures must be developed to overcome problems with incompatibility of constraints.
- A very important part is a suitable choice of the merit function to decide if the step is feasible (new approaches: filter technique, trust-funnel algorithm).

Thank you for your attention!