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@ Introduction
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General nonlinear programming problem

Consider the general nonlinear programming problem

(NP) x =arg min f(x) st. ¢(x) <0, cg(x)=0,
XER"

where

a(x)=[c(x):ielr, I=A{1,....,m}
ce(x) =[ci(x):ie E]T, E={m +1,...,m + mg = m}.
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General nonlinear programming problem

Consider the general nonlinear programming problem

(NP) x =arg min f(x) st. ¢(x) <0, cg(x)=0,
XER"

where

a(x)=[c(x):ielr, I=A{1,....,m}
ce(x) =[ci(x):ie E]T, E={m +1,...,m + mg = m}.

We assume that the functions
fx):R"—=R, cx):R"—=>R™, ce(x):R"—R™E

are twice continuously differentiable.
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General nonlinear programming problem

Consider the general nonlinear programming problem

(NP) x =arg min f(x) st. ¢(x) <0, cg(x)=0,
XER"

where
a(x)=[c(x):ien, I={1,...,m}
ce(x) =[ci(x):ie E]T, E={m +1,...,m + mg = m}.
We assume that the functions
fx):R"—=R, cx):R"—=>R™, ce(x):R"—R™E
are twice continuously differentiable.

Difficulty

This problem is hard to solve due to the presence of inequality
constraints.
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The idea of interior point methods

We introduce a slack vector
s=s=[si(x):iel

and transform original problem (NP) to the sequence of problems
with the logarithmic barrier function

(IP) x =arg min (F(X,s) =f(x) — pe’ In(S/)e>

(x,s1)ER™MMI

subject to
c(x,s) = [a(x) +s1, ce(x)] =0

where
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The idea of interior point methods

We introduce a slack vector
s=s=[si(x):iel

and transform original problem (NP) to the sequence of problems
with the logarithmic barrier function

(IP) x =arg min (F(X,s) =f(x) — pe’ In(S/)e>

(x,s1)ER™MMI

subject to
c(x,s) = [a(x) + s, ce(x)] =0
where
@ 1 > 0 is a barrier parameter, y — 0 is assumed
@ e is the vector with unit elements
o Sy =diag(si:i€l)
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The KKT conditions

Let
L(x,s,up, ug) = F(x,s) + u” c(x, s)
= f(x)—pe’ In(S))e+ u] (ci(x) + s1) + uf ce(x)
be a Lagrange function of (IP) with Lagrange multipliers

u = [uy, ug]. Then the necessary KKT conditions for the solution
of problem (IP) have the following form (primal-dual formulation):
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The KKT conditions

Let
L(x,s,up, ug) = F(x,s) + u” c(x, s)
= f(x)—pe’ In(S))e+ u] (ci(x) + s1) + uf ce(x)
be a Lagrange function of (IP) with Lagrange multipliers

u = [uy, ug]. Then the necessary KKT conditions for the solution
of problem (IP) have the following form (primal-dual formulation):

0L/ox = g(x,u)=0,
0L/0s = S Uje—pe=0, (1)
OL/Ou; = c¢(x)+s =0,
0L/0ug = ce(x) =0,
where
g(x,u) = VF(x)+ Ai(x)u + Ae(x)uE,
Ai(x) = [Vei(x) i €], Ae(x) = [Vci(x) : i € E],
Sy =diag(s; : i€ l) >0, U = diag(u; :iel) = 0.
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The Newton method

Linearizing the primal-dual equations, we get one step of the
Newton method

G, 0 A Ae dy gx

0 U/ 5/ 0 ds _ 5/ U/e — ue (2)
Al 10 0 |dy]| a+s |’
AL 0 0 0] |dy ce

where d,, ds, d,,, d,. are direction vectors and
& = g(x,u)=VF(x)+ A (x)u + Ae(x)ue
Gx = G(x,u)=V>3f(x)+ Z u;V2¢i(x)

ielUE
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The Newton method

Linearizing the primal-dual equations, we get one step of the
Newton method

G, 0 A Ae dy gx

0 U/ 5/ 0 ds _ 5/ U/e — ue (2)
Al 10 0 |dy]| a+s |’
AL 0 0 0] |dy ce

where d,, ds, d,, ., d,. are direction vectors and

8x g(x,u) = VF(x)+ A/(x)u + Ae(x)ue

G(x,u) = V2f(x) + Z u;V2¢i(x)

ielUE

Gx

@ The Hessian matrix G(x, u) is not usually given analytically,
but automatic or numerical differentiation is used instead.

@ We assume that the matrix of system (2) is nonsingular.
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Description of the algorithm

The algorithm for an interior point method can be roughly
described in the following form.
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Description of the algorithm

The algorithm for an interior point method can be roughly
described in the following form.

@ Let vectors
xeR", 0<seR™, 0<uyeR™, ugeR™E

and a barrier parameter > 0 be given.
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Description of the algorithm

The algorithm for an interior point method can be roughly
described in the following form.

© Let vectors

xeR", 0<s€R™, 0<uyeR™,
and a barrier parameter p > 0 be given.
@ Determine direction vectors dy, ds, d,, dy. satisfying (2).

G, 0 A Ae dx

Ug € RME

8x
0 U/ S/ 0 ds _ S/ U/e — ue
Al 1 0 0 |dy]| c+ s
AL 0 0 0] |d cE
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Description of the algorithm

The algorithm for an interior point method can be roughly
described in the following form.

@ Let vectors
xeR", 0<seR™, 0<uyeR™, ugeR™E

and a barrier parameter > 0 be given.
@ Determine direction vectors dy, ds, dy,, dy, satisfying (2).
© Choose a suitable step-length 0 < o < @.
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Description of the algorithm

The algorithm for an interior point method can be roughly
described in the following form.

@ Let vectors
xeR", 0<seR™, 0<uyeR™, ugeR™E

and a barrier parameter > 0 be given.
@ Determine direction vectors dy, ds, dy,, dy, satisfying (2).
© Choose a suitable step-length 0 < o < @.

@ Set new iterations
x:=x+ady, s :=s/(a,ds) >0,

uyp = UI(OZ, du,) >0, ug:=ug+ O‘dUE’

and determine a new barrier parameter p > 0.
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Description of the algorithm

The algorithm for an interior point method can be roughly
described in the following form.

@ Let vectors
xeR", 0<seR™, 0<uyeR™, ugeR™E

and a barrier parameter > 0 be given.
@ Determine direction vectors dy, ds, dy,, dy, satisfying (2).
© Choose a suitable step-length 0 < o < @.

@ Set new iterations
x:=x+ady, s :=s/(a,ds) >0,

uyp = UI(OZ, du,) >0, ug:=ug+ O‘dUE’

and determine a new barrier parameter p > 0.

© Termination is when the KKT conditions are fulfiled.
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© Direction determination
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Active and inactive constraints

KKT condition (1) implies that S;Uje = pe and if p— 0, then
either u; — 0 or s; — 0 holds for every index i€ /. We split
the set of inequality constraints to an active and inactive subsets.
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Active and inactive constraints

KKT condition (1) implies that S;Uje = pe and if p— 0, then
either u; — 0 or s; — 0 holds for every index i€ /. We split
the set of inequality constraints to an active and inactive subsets.

Active constraints
Are those for which ¢;(x), i € I, are close to zero:
@ s <¢eu, i €l,
o they are denoted by 7, i.e. &/(x),3/, 0, where & € R™.
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Active and inactive constraints

KKT condition (1) implies that S;Uje = pe and if p— 0, then
either u; — 0 or s; — 0 holds for every index i€ [. We split
the set of inequality constraints to an active and inactive subsets.

Active constraints
Are those for which c¢;(x), i € I, are close to zero:
@ s <¢eu, i €l,
o they are denoted by 7, i.e. &/(x),3/, 0, where & € R™.

Inactive constraints
Are those for which wu;, i € I, are close to zero:

@ si>eu, i€,

@ they are denoted by ¥, i.e. ¢/(x),3%, 7, where & € R™.

N

Here e, > 0 is a suitable parameter and m; + rh; = my.
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Symmetrization

System (2) is nonsymmetric with the dimension n+ mg +2m;.
This system can be symmetrized as follows:
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Symmetrization

System (2) is nonsymmetric with the dimension n+ mg +2m;.
This system can be symmetrized as follows:

original system (2)

G 0 A Ae dx

8x
0 U/ 5/ 0 ds _ 5/ U/e — ue
Al 10 0 |dy]| a+s |’
AL 0 0 0] |du ce
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Symmetrization

System (2) is nonsymmetric with the dimension n+ mg +2m;.
This system can be symmetrized as follows:

symmetrized system

GX 0 A[ AE dX 8x
0 | D 0| |Dtds| D gs
Al D 0 0 dy |~ |a+s
AL 0 0 O dy, ce

where
D = (SUHY?
Digs = (SiU)Y2e—u(SU;)~ %
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Symmetrization

System (2) is nonsymmetric with the dimension n+ mg +2m;.
This system can be symmetrized as follows:

G, O
0 /
Al D,
AZ_-— 0
where
D,
Dgs

Disadvantage

symmetrized system

A Ae dx 8x
Dy 0| |D/tds D;gs
0 0 du, Cc|+ S/
0O O dy; CE

= (S
= (5/ U/)l/ze = ,U,(S/ U/)fl/ze

Elements of matrix S, Ufl can be unbounded since u; — 0 if the
i-th inequality constraint is inactive at the solution point.
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Elimination of inactive equations

Inactive equations are eliminated and computed directly afterwards

ds = —(&+Ald+¥)
Efu, = gfll\lj/(é/ +/\A/de) +,u§fle

while active parts are computed iteratively from the system

X 0 ’AAI AE dX gx
0 I D o |Dds D&,
AT B o o] 4 | T |ats ©
| | uy Cr+ 5
AL 0 0 o0 Ao CE
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Boundedness of matrices

Matrices 3, U,‘l and CX and vector gy are bounded (if original
Gx, 8x, and [A;, Ag| are bounded) and if the strict complementarity
conditions

Iim(s,-+u,-)>0, iel,

n—0

hold (recall that s; >0, u; >0 and s; — 0 or u; — 0), then

lim 5,0, = 0.
pu—0
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Boundedness of matrices

Matrices 3, U,‘l and CX and vector gy are bounded (if original
Gx, 8x, and [A;, Ag| are bounded) and if the strict complementarity
conditions

Iim(s,-+u,-)>0, i€l

p—

hold (recall that s; >0, u; >0 and s; — 0 or u; — 0), then
lim 5,0, = 0.
pu—0
Similarly, the matrix §,_1(vjl is bounded and if the strict
complementarity conditions hold, then

lim 5710, = 0.

pu—0
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Direction determination - summary

Simplified form of (3):

Gx 0 A Ag
0o I D o0

Al D 0 o0

AL 0 0 o0
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Direction determination - summary

Simplified form of (3):
G
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Direction determination - summary

Simplified form of (3):

Gx 0 Al AE dX gx
0o [/ D ol |Dtds| D&
Al Dy 0 o0 dy, | &+
AL 0 0 o0 dup ce

A0 e

o Active directions dy, ds, Elu,, dy. appearing in system (4) are
determined either by indefinitely preconditioned conjugate
gradient method or by a trust-region approach
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Direction determination - summary

Simplified form of (3):

Gx 0 /AAI AE dX gx
0 / D/ 0 Dflas _ Dlgs
Al Dy 0 o0 dy, | &+
AL 0 0 o0 g cE

A0 e

o Active directions dy, ds, Elu,, dy. appearing in system (4) are
determined either by indefinitely preconditioned conjugate
gradient method or by a trust-region approach

@ Inactive directions ds, au, are computed directly afterwards
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9 Trust-region subproblem
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Introduction

@ Consider the subproblem

1
min Q(d):2dTBd+gTd st. ATd+h=0 (5)
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Introduction

@ Consider the subproblem

1
min Q(d):2dTBd+gTd st. ATd+h=0 (5)

@ The Lagrange function has the form
L(d,dy) = Q(d) + d] (ATd + h)

where d,, is a Lagrange multiplier.
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Introduction

@ Consider the subproblem

1
min Q(d):5d73d+gTd st. ATd+h=0 (5)

@ The Lagrange function has the form
L(d,dy) = Q(d) + d](ATd + h)
where d,, is a Lagrange multiplier.
@ The optimality conditions
oL/od =0, 0L/od, =0

have exactly form (4).

b ol 2] --[3
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Introduction

@ Consider the subproblem

1
min Q(d) = 2dTBd+gTd st. ATd+h=0 (5)

@ The Lagrange function has the form
L(d,dy) = Q(d) + d] (ATd + h)

where d,, is a Lagrange multiplier.

@ The optimality conditions
oL/od =0, 0L/od, =0

have exactly form (4).

@ We can use a trust region method to (5) with a constraint
ldll < &

to obtain a direction vector d.
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Incompatibility of constraints

As both constraints
ATd+h=0, |d|<A

can be incompatible,

ATd+h=0

we will use the idea of Byrd and Omojokun, to make both
constraints compatible and secure a sufficient decrease of Q(d) :

d=dy+dy
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Vertical step

First, consider the problem
min |ATd +h|| st ||d|| <6A

for 0<d<1 (eg. 6=0.38).

Vertical subproblem

This problem is equivalent to

1
min Qy(d) = 5 dTAATd + hTATd st ||d|| <A

We suppose that A has a full column rank.
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The Dennis-Mei dogleg method

We compute the Cauchy and the Newton steps

1AR||?

de=——1—"_
€~ AT AR

Ah,  dy=—A(ATA)h

and since ||dc|| < ||dn]|, we proceed as follows:
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The Dennis-Mei dogleg method

We compute the Cauchy and the Newton steps

1AR||?

de=——1—"_
€~ AT AR

Ah,  dy=—A(ATA)h

and since ||dc|| < ||dn]|, we proceed as follows:

o if ||[dc|| > 0A, then set

OA
dy = 22 dc
|dcll
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The Dennis-Mei dogleg method

We compute the Cauchy and the Newton steps

1AR||?

de=——1—"_
€~ AT AR

Ah,  dy=—A(ATA)h

and since ||dc|| < ||dn]|, we proceed as follows:

o if ||[dc|| > 0A, then set

OA
dy = 22 dc
|dcll

o if ||dy|| < A, then set

dy = dy
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The Dennis-Mei dogleg method

We compute the Cauchy and the Newton steps

1AR||?

de=——1—"_
€~ AT AR

Ah,  dy=—A(ATA)h

and since ||dc|| < ||dn]|, we proceed as follows:
o if ||dc|| > 0A, then set
YA

dy = ——dc
[dcl]

o if ||dy|| < 0A, then set
dy = dy
@ in the remaining case ||dc|| < 0A < ||dn]|, set
dy = dc + k(dy — dc¢),

where k > 0 is chosen so that ||dy|| = dA
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Horizontal step

Horizontal subproblem I.

Reformulation of original subproblem (5):

min Qu(d)=1/2d"Bd+g’d st ||d| <A, ATd=ATdy
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Horizontal step

Horizontal subproblem I.

Reformulation of original subproblem (5):

min Qu(d)=1/2d"Bd+g’d st ||d| <A, ATd=ATdy

The constraints are compatible (d = dy satisfies them) and since
we require d = dy + dy, for a solution dy it follows that

ATdy =0, dy=2dz, dldy=0

where the columns of Z form a basis of the null space of AT.
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Horizontal step

Horizontal subproblem I.

Reformulation of original subproblem (5):

min Qu(d)=1/2d"Bd+g’d st ||d| <A, ATd=ATdy

The constraints are compatible (d = dy satisfies them) and since
we require d = dy + dy, for a solution dy it follows that

ATdy =0, dy=2dz, dldy=0
where the columns of Z form a basis of the null space of AT.

Horizontal subproblem II.
Substitution into Q leads to a subproblem for d»

min Qz(d)=1/2d"Bzd +gld st. ||Zd| <Az

By =Z"BZ, gz=2Z"(Bdy+g), Az=1/A2—]dy|?
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The Steihaug-Toint conjugate gradient method

@ We use the preconditioned conjugate gradient method with
the preconditioner
cC=27"7
and include these iterations in original subproblem (5) for
d =dy + Zdzy with ||d| < A.
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The Steihaug-Toint conjugate gradient method

@ We use the preconditioned conjugate gradient method with
the preconditioner
cC=27"7
and include these iterations in original subproblem (5) for
d =dy + Zdzy with ||d| < A.
@ The use of dy = Zdz leads to multiplication by the matrix
P, =2(Z"2)712T =1 - A(ATA)AT = P,

so the matrix Z need not be computed.
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The Steihaug-Toint conjugate gradient method

@ We use the preconditioned conjugate gradient method with
the preconditioner
cC=27"7
and include these iterations in original subproblem (5) for
d =dy + Zdzy with ||d| < A.

@ The use of dy = Zdz leads to multiplication by the matrix
P, =2(Z"2)712T =1 - A(ATA)AT = P,
so the matrix Z need not be computed.

@ Lagrange multipliers d, cannot be computed from the CG
method. From (4) we have

Ad,=—(g+ Bd)=—r
where r is a residuum. Thus
d, = —(ATA) AT,

as a solution of a least squares problem.
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The algorithm

Iterations for original subproblem (5) have the form

Q@d=dy, r=Bd+g, d,=—(ATA AT,
F=r+Ad, p=-F

@n=p'Bp, a="5F d-=d+ap

Q@ rf=r+4aBd, df=—(ATA)AT/T,

T
rt P

'F+:I’++Adj_, ﬁ: rTF p+:7'F++ﬂp
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The algorithm

Iterations for original subproblem (5) have the form

Q@d=dy, r=Bd+g, d,=—(ATA AT,
F=r+Ad, p=-F

@n=p'Bp, a="5F d-=d+ap

Q@ rf=r+4aBd, df=—(ATA)AT/T,

T
rt P

'F+:I’++Adj_, ﬁ: rTF p+:7?++ﬂp

Termination

negative curvature is encountered if n <0 then d, = d + kp,
where k > 0 is chosen so that ||d,|| = A;
r.=r+kBp, d,, = —(ATA)1AT,
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The algorithm

Iterations for original subproblem (5) have the form

Q@d=dy, r=Bd+g, d,=—-(ATA AT,
F=r+Ad,, p=-r

@n=p'Bp, a="5F d-=d+ap

Q@ rf=r+4aBd, df=—(ATA)AT/T,
P=rt+Adf, =5, pt=—Ft+6p

rTF

Termination

negative curvature is encountered if n <0 then d, = d + kp,
where k > 0 is chosen so that ||d,|| = A;
r.=r+kBp, d,, = —(ATA)1AT,

trust-region constraint is violated if ||d*|| > A, then as above
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The algorithm

Iterations for original subproblem (5) have the form
Q@d=dy, r=Bd+g, d,=—(ATA AT,
F=r+Ad, p=-F

T

Q n=p’Bp, a:fT?, dt=d+ap
Q@ rf=r+4aBd, df=—(ATA)AT/T,
Pt L AdE, B=T1E pt= 4 pp

rTF

Termination

negative curvature is encountered if n <0 then d, = d + kp,
where k > 0 is chosen so that ||d,|| = A;
r.=r+kBp, d,, = —(ATA)1AT,

trust-region constraint is violated if ||d*|| > A, then as above

unconstrained solution with sufficient precision if ||rT|| < ellg]l,
then d, =d*, d,, =d
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@ Step-length selection
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The original problem

Back to the original problem:

x=arg min (F(X,s) = f(x) — pe’ In(S,)e)

(x,51)ERMMI

subject to
c(x,s) = [a(x) +s1, ce(x)] =0

with Lagrange multipliers

u = [uy, ug]
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The original problem

Back to the original problem:

x=arg min (F(X,s) = f(x) — pe’ In(S,)e)

(x,51)ERMMI

subject to
c(x,s) = [a(x) +s1, ce(x)] =0

with Lagrange multipliers
u = [uy, ug]

After determination of active components d,, cAIS, cAlu,, dye from
the Byrd-Omojokun trust-region subproblem we compute inactive
components ds, d,, to obtain the quantities ds, d,,, .
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New iteration step

Now we define

xtT = x + a,dy, 5,+ = 5; + asds,

+ _ + _
u"” =u +aydy, U =uUp+au,dy

such that sfr >0 and u,Jr > 0 hold using the bounds &5 and &,,.
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New iteration step

Now we define
xtT = x + a,dy, 5,+ = 5; + asds,
+ _ + _
u"” =u +aydy, U =uUp+au,dy

such that sfr >0 and u,Jr > 0 hold using the bounds &5 and &,,.

Accepted step
The step xT,s™, u™ is accepted if for & = 1, where

ay =a, as=min(a,ds), ay =min(a,d,), o=«
we have

F(xt,sT) < F(x,s) or |c(xT,sT)| < |c(x,s)]

Otherwise, the step is rejected (ay = as = oy, = oy, = 0).

Ladislav Luksan, Ctirad Matonoha, Jan Vli¢ek Interior-point method for nonlinear nonconvex optimization



The merit function

To decide if the step is acceptable, we define

@ the merit function P(a) with the coefficient o > 0:

P()

F(x + axdx,s + asds)

(u+ dy) T c(x + axdy, s + asds)

+ o+

o
5 llc(x + axdy,s + (ysds)\|2
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To decide if the step is acceptable, we define
@ the merit function P(a) with the coefficient o > 0:
P(a) = F(x+ axdy,s+ asds)
+ (u+dy)Te(x + axdy, s + asds)
S % llc(x + axdy,s + (ysds)\|2

@ and its quadratic approximation

Q(a) = P(0) + aP'(0) + O‘;dTBd
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To decide if the step is acceptable, we define
@ the merit function P(a) with the coefficient o > 0:
P(a) = F(x+ oxdy,s+ asds)
(u+ dy) T c(x + axdy, s + asds)

+
o 2
S 5 lc(x + axdx, s + asds)||

@ and its quadratic approximation

Q(a) = P(0) + aP'(0) + O‘;dTBd

We can use another merit function but P(«) has shown to be the
best in practical computations.

Actual decrease: defined as P(1) — P(0)
Predicted decrease: defined as Q(1) — Q(0)
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Feasible step

Theorem
The condition

Q(1) - Q(0) <0

is necessary for applying the trust-region method. It holds provided

1dTBd +d"g+d"Ad,
—dTAc

g >
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Feasible step

Theorem
The condition

Q(1) - Q(0) <0

is necessary for applying the trust-region method. It holds provided

1dTBd +d"g+d"Ad,

7 —dTAc |
Now we can define the number
_ P(M)—P(0
T Q) = Q(O
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Feasible step

Theorem
The condition

Q(1) - Q(0) <0

is necessary for applying the trust-region method. It holds provided

1dTBd +d"g+d"Ad,

g >

—dTAc
Now we can define the number
- P(1) — P(0
T Q) = Q(O

The step is
--) accepted if o > 0: k-th iteration ~» (k 4 1)-st iteration

-( rejected if o < 0: choose A < ||d| and compute new
direction vectors in the k-th iteration
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Update of parameters

@ Update of A:

AT = g|d|| <A if 0<o
AT = A if 0<0<7D
AT = 7A>A if o2<o

Here 0 <f8<1<+vy and 0<p<p<1.
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Update of parameters

@ Update of A:

AT = B|d| <A if o<o
AT = A if 0<0<b
At = 4ASA if <o

Here 0 <f8<1<+vy and 0<p<p<1.

@ Barrier parameter p is changed each iteration by a heuristic

approach:
STU/
u=v
my
where
W= imin{l_w,2}3 and w = M{S’u’}
10 20w STU//m/
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© Numerical experiments
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Test problems

The methods for constrained optimization are implemented in the
interactive system for universal functional optimization UFO

Www.cs.cas.cz/luksan/ufo.html
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The methods for constrained optimization are implemented in the
interactive system for universal functional optimization UFO

Www.cs.cas.cz/luksan/ufo.html

Modifications of 18 test problems for equality constrained
minimization are used — subroutine TEST 20

WwWww.cs.cas.cz/luksan/test.html
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minimization are used — subroutine TEST 20
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We have performed numerical comparison of methods for direction
determination
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Test problems

The methods for constrained optimization are implemented in the
interactive system for universal functional optimization UFO

Www.cs.cas.cz/luksan/ufo.html

Modifications of 18 test problems for equality constrained
minimization are used — subroutine TEST 20

www.cs.cas.cz/luksan/test.html

We have performed numerical comparison of methods for direction
determination
IPCGM indefinitely preconditioned conj. gradient method !
applying to system (4)

ol la]--[8
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Test problems

The methods for constrained optimization are implemented in the
interactive system for universal functional optimization UFO

www.cs.cas.cz/luksan/ufo.html

Modifications of 18 test problems for equality constrained
minimization are used — subroutine TEST 20

WwWww.cs.cas.cz/luksan/test.html

We have performed numerical comparison of methods for direction
determination
IPCGM indefinitely preconditioned conj. gradient method !
applying to system (4)
TRM trust-region method applying to subproblem (5)

1
min Q(d):EdTBd—i—gTd st. ATd+h=0
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Test problems

The methods for constrained optimization are implemented in the
interactive system for universal functional optimization UFO

Www.cs.cas.cz/luksan/ufo.html

Modifications of 18 test problems for equality constrained
minimization are used — subroutine TEST 20

WwWww.cs.cas.cz/luksan/test.html

We have performed numerical comparison of methods for direction
determination

IPCGM indefinitely preconditioned conj. gradient method !
applying to system (4)
TRM trust-region method applying to subproblem (5)

All problems have the dimension n = 1000.
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Columns of tables

Constr. are the constraints used,
Method is the method for the direction determination used,
NIT is the total number of iterations,

NFV is the total number of function evaluations,

°
°
°
°
@ NFG is the total number of gradient evaluations,
@ NF is the total number of failures,

@ NT is the total number of tuned parameters,

@ NB is the total number of better computed examples,
°

Time is the total computational time in seconds.
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Comparison

| Constr. | Method | NIT NFV  NFG NF NT NB Time

c(x)>0 [ IPCGM | 695 931 4989 0 7 0 467
TRM | 1385 1528 11575 0 10 5 5094

c(x) <0 | IPCGM | 2196 3147 14023 0 3 2 1320
TRM | 1798 1872 11782 2 3 0 924

x>0, |IPCGM | 811 1386 6597 0 5 0 6.89
c(x)>0 | TRM |1255 1378 9073 0 5 1 574
x<0, |IPCGM | 562 833 4149 1 1 1 6.77
c(x)<0 | TRM | 759 828 5501 2 4 0 7.11
x| <1, [ IPCGM | 613 825 4637 0 4 1 431
lc(x)] <1 | TRM | 1182 1297 8124 1 6 3 0.38
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Conclusion

@ Trust-region methods are competitive with indefinitely
preconditioned conjugate gradient method for direction
determination in constrained optimization.
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@ Better procedures must be developed to overcome problems
with incompatibility of constraints.
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Conclusion

@ Trust-region methods are competitive with indefinitely
preconditioned conjugate gradient method for direction
determination in constrained optimization.

@ Better procedures must be developed to overcome problems
with incompatibility of constraints.
@ A very important part is a suitable choice of the merit

function to decide if the step is feasible (new approaches:
filter technique, trust-funnel algorithm).
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Conclusion

@ Trust-region methods are competitive with indefinitely
preconditioned conjugate gradient method for direction
determination in constrained optimization.

@ Better procedures must be developed to overcome problems
with incompatibility of constraints.

@ A very important part is a suitable choice of the merit
function to decide if the step is feasible (new approaches:
filter technique, trust-funnel algorithm).

Thank you for your attention!
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