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1. The unconstrained problem
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Introduction

Consider the general unconstrained problem

min F (x), x ∈ Rn,

where F : Rn → R is a twice continuously differentiable objective
function bounded from below. Basic optimization methods (trust-region
and line-search methods) generate points xi ∈ Rn, i ∈ N , in such a way
that x1 is arbitrary and

xi+1 = xi + αidi, i ∈ N ,

where di ∈ Rn are direction vectors and αi > 0 are step sizes.
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Notation

For a description of trust-region methods we define the quadratic function

Qi(d) =
1

2
dT Bid + gT

i d

which locally approximates the difference F (xi + d) − F (xi), the vector

ωi(d) = (Bid + gi)/‖gi‖

for the accuracy of a computed direction, and the number

ρi(d) =
F (xi + d) − F (xi)

Qi(d)

for the ratio of actual and predicted decrease of the objective function.
Here gi = g(xi) = ∇F (xi) and Bi ≈ ∇2F (xi) is an approximation of the
Hessian matrix at the point xi ∈ Rn.

Trust-region methods are based on approximate minimizations of Qi(d) on
the balls ‖d‖ ≤ ∆i followed by updates of radii ∆i > 0.
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Definition of TR methods

Direction vectors di ∈ Rn are chosen to satisfy the conditions

‖di‖ ≤ ∆i,

‖di‖ < ∆i ⇒ ‖ωi(di)‖ ≤ ω,

−Qi(di) ≥ σ‖gi‖min(‖di‖, ‖gi‖/‖Bi‖),

where 0 ≤ ω < 1 and 0 < σ < 1. Step sizes αi ≥ 0 are selected so that

ρi(di) ≤ 0 ⇒ αi = 0,

ρi(di) > 0 ⇒ αi = 1.

Trust-region radii 0 < ∆i ≤ ∆ are chosen in such a way that
0 < ∆1 ≤ ∆ is arbitrary and

ρi(di) < ρ ⇒ β‖di‖ ≤ ∆i+1 ≤ β‖di‖,

ρi(di) ≥ ρ ⇒ ∆i ≤ ∆i+1 ≤ ∆,

where 0 < β ≤ β < 1 and 0 < ρ < 1.
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Maximum step length ∆

The use of the maximum step length ∆ has no theoretical significance but
is very useful for practical computations:

● The problem functions can sometimes be evaluated only in a relatively
small region (if they contain exponentials) so that the maximum
step-length is necessary.

● The problem can be very ill-conditioned far from the solution point, thus
large steps are unsuitable.

● If the problem has more local solutions, a suitably chosen maximum
step-length can cause a local solution with a lower value of F to be
reached.

Therefore, the maximum step-length ∆ is a parameter which is most
frequently tuned.
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Global convergence

The following theorem establishes the global convergence of TR methods.

Let the objective function F : Rn → R be bounded from below and have
bounded second-order derivatives. Consider the trust-region method and
denote Mi = max(‖B1‖, . . . , ‖Bi‖), i ∈ N . If

∑

i∈N

1

Mi

= ∞,(1)

then lim infi→∞ ‖gi‖ = 0.

Note that (1) is satisfied if there exist a constant B and an infinite set
M ⊂ N such that ‖Bi‖ ≤ B ∀i ∈ M.



L.Lukšan, C.Matonoha, J.Vlček: On Lagrange multipliers... 9

2. Computation of direction vectors
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Moré-Sorensen 1983

The most sophisticated method is based on a computation of the optimal
locally constrained step. In this case, the vector d ∈ Rn is obtained by
solving the subproblem

min Q(d) =
1

2
dT Bd + gT d subject to ‖d‖ ≤ ∆.

Necessary and sufficient conditions for this solution are

‖d‖ ≤ ∆, (B + λI)d = −g, B + λI � 0, λ ≥ 0, λ(∆ − ‖d‖) = 0,

where λ is a Lagrange multiplier. The MS method is based on solving the
nonlinear equation

1

‖d(λ)‖
=

1

∆
with (B + λI)d(λ) + g = 0

by the Newton’s method using the Choleski decomposition of B + λI and
gives the optimal Lagrange multiplier λ ≥ 0.
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Gould-Lucidi-Roma-Toint 1997

This method solves the quadratic subproblem iteratively by using the
symmetric Lanczos process. A vector dj which is the j−th approximation
of d is contained in the Krylov subspace

Kj = span{g, Bg, . . . , Bj−1g}

of dimension j defined by the matrix B and the vector g.

In this case, dj = Zd̃j , where d̃j is obtained by solving the
j−dimensional subproblem

min
1

2
d̃T T d̃ + ‖g‖eT

1 d̃ subject to ‖d̃‖ ≤ ∆.

Here T = ZT BZ (with ZT Z = I) is the Lanczos tridiagonal matrix and
e1 is the first column of the unit matrix.
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Steihaug 1983, Toint 1981

The simpler Steihaug-Toint method, based on the conjugate gradient
method applied to the linear system

Bd + g = 0,

computes only an approximate solution. We either obtain an
unconstrained solution with a sufficient precision (the residuum norm is
small) or stop on the trust-region boundary (if either a negative curvature is
encountered or the constraint is violated). This method is based on the fact
that

Q(dk+1) < Q(dk) and ‖dk+1‖ > ‖dk‖

hold in the subsequent CG iterations if the CG coefficients are positive
and no preconditioning is used.

For SPD preconditioner C we have

‖dk+1‖C > ‖dk‖C with ‖dk‖
2
C = dT

k Cdk.
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Preconditioned Steihaug-Toint

There are two possibilities how the Steihaug-Toint method can be
preconditioned:

1. To use the norms ‖di‖Ci
(instead of ‖di‖), where Ci are

preconditioners chosen. This possibility is not always efficient because
the norms ‖di‖Ci

, i ∈ N , vary considerably in the major iterations
and the preconditioners Ci, i ∈ N , can be ill-conditioned.

2. To use the Euclidean norms even if arbitrary preconditioners
Ci, i ∈ N , are used. In this case, the trust-region can be leaved
prematurely and the direction vector obtained can be farther from the
optimal locally constrained step than that obtained without
preconditioning. This shortcoming is usually compensated by the rapid
convergence of the preconditioned CG method.

Our computational experiments indicate that the second way is more
efficient in general.
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Shifted Steihaug-Toint

This method uses the (preconditioned) conjugate gradient method applied
to the shifted linear system

(B + λ̃I)d + g = 0,

where λ̃ is an approximation of the optimal Lagrange multiplier λ. For this
reason, we need to know the properties of Lagrange multipliers
corresponding to trust-region subproblems used.

Thus, consider a sequence of subproblems

dj = arg min
d∈Kj

Q(d) subject to ‖d‖ ≤ ∆,

Q(d) =
1

2
dT Bd + gT d, Kj = span{g, Bg, . . . , Bj−1g},

with corresponding Lagrange multipliers λj , j ∈ {1, . . . , n}.
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3. The main result
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Lemma 1

A simple property of the conjugate gradient method

Let B be a SPD matrix, let

Kj = span{g, Bg, . . . , Bj−1g}, j ∈ {1, . . . , n},

be the j-th Krylov subspace given by the matrix B and the vector g. Let

dj = arg min
d∈Kj

Q(d), where Q(d) =
1

2
dT Bd + gT d.

If 1 ≤ k ≤ l ≤ n, then
‖dk‖ ≤ ‖dl‖.

Especially
‖dk‖ ≤ ‖dn‖, where dn = arg min

d∈Rn
Q(d)

(dn is the optimal solution).
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Lemma 2

Comparing Krylov subspaces of the matrices B and B + λI

Let λ ∈ R and

Kk(λ) = span{g, (B + λI)g, . . . , (B + λI)k−1g}, k ∈ {1, . . . , n},

be the k-dimensional Krylov subspace generated by the matrix B + λI
and the vector g. Then

Kk(λ) = Kk(0).
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Lemma 3

Properties of matrices B1 − B2 and B−1

2 − B−1

1

Let B1 and B2 be symmetric and positive definite matrices. Then

B1 − B2 � 0 if and only if B−1

2 − B−1

1 � 0, and

B1 − B2 ≻ 0 if and only if B−1
2 − B−1

1 ≻ 0.
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Lemma 4

A relation between sizes of the Lagrange multipliers and the norms of directions vectors

Let ZT
k BZk + λiI, λi ∈ R, i ∈ {1, 2}, be symmetric and positive definite,

where Zk ∈ Rn×k is a matrix whose columns form an orthonormal basis
for Kk. Let

dk(λi) = arg min
d∈Kk

Qλi
(d), where Qλ(d) =

1

2
dT (B + λI)d + gT d.

Then
λ2 ≤ λ1 ⇔ ‖dk(λ2)‖ ≥ ‖dk(λ1)‖.
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Theorem

The main theorem

Let dj , j ∈ {1, . . . , n}, be solutions of minimization problems

dj = arg min
d∈Kj

Q(d) subject to ‖d‖ ≤ ∆, where Q(d) =
1

2
dT Bd+gT d,

with corresponding Lagrange multipliers λj , j ∈ {1, . . . , n}. If
1 ≤ k ≤ l ≤ n, then

λk ≤ λl.
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4. Applications
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The idea

The result of previous theorem can be applied to the following idea. We
apply the Steihaug-Toint method to a shifted subproblem

min Q̃(d) = Qλ̃(d) =
1

2
dT (B + λ̃I)d + gT d s.t. ‖d‖ ≤ ∆

where λ̃ is an approximation of the optimal Lagrange multiplier λ. If we set
λ̃ = λk for some k ≤ n, then

0 ≤ λ̃ = λk ≤ λn = λ.
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Consequences

As a consequence of this inequality, one has:

1. λ = 0 implies λ̃ = 0 so that ‖d‖ < ∆ implies λ̃ = 0. Thus the
shifted Steihaug-Toint method reduces to the standard Steihaug-Toint
method in this case.

2. If B ≻ 0 and 0 < λ̃ ≤ λ, then one has
∆ = ‖(B + λI)−1g‖ ≤ ‖(B + λ̃I)−1g‖ < ‖B−1g‖. Thus the
unconstrained minimizer of Q̃(d) is closer to the trust-region boundary
than the unconstrained minimizer of Q(d) and we can expect that d(λ̃)
is closer to the optimal locally constrained step than d.

3. If B ≻ 0 and λ̃ > 0, then the matrix B + λ̃I is better conditioned
than B and we can expect that the shifted Steihaug-Toint method will
converge more rapidly than the standard Steihaug-Toint method.
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The algorithm

The shifted Steihaug-Toint method consists of the three major steps.

1. Carry out k ≪ n steps of the unpreconditioned Lanczos method to
obtain the tridiagonal matrix T ≡ Tk = ZT

k BZk.

2. Solve the subproblem

min (1/2)d̃T T d̃ + ‖g‖eT
1 d̃ subject to ‖d̃‖ ≤ ∆,

using the method of Moré and Sorensen, to obtain the Lagrange
multiplier λ̃.

3. Apply the (preconditioned) Steihaug-Toint method to the subproblem

min Q̃(d) subject to ‖d‖ ≤ ∆

to obtain the direction vector d = d(λ̃).
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5. Numerical comparison
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Numerical comparison

The methods are implemented in the interactive system for universal
functional optimization UFO as subroutines for solving trust-region
subproblems. They were tested by using two collections of 22 sparse test
problems with 1000 and 5000 variables – subroutines TEST14 and
TEST15 described in [Lukšan,Vlček, V767, 1998], which can be downloaded
from the web page

www.cs.cas.cz/luksan/test.html

The results are given in two tables, where NIT is the total number of
iterations, NFV is the total number of function evaluations, NFG is the total
number of gradient evaluations, NDC is the total number of Choleski-type
decompositions, NMV is the total number of matrix-vector multiplications,
and Time is the total computational time in seconds.
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Table 1 – TEST14

N Method NIT NFV NFG NDC NMV Time

1000 MS 1911 1952 8724 3331 1952 3.13
ST 3475 4021 17242 0 63016 5.44
SST 3149 3430 15607 0 75044 5.97
GLRT 3283 3688 16250 0 64166 5.40
PST 2608 2806 12802 2609 5608 3.30
PSST 2007 2077 9239 2055 14440 2.97

5000 MS 8177 8273 34781 13861 8272 49.02
ST 16933 19138 84434 0 376576 134.52
SST 14470 15875 70444 0 444142 146.34
GLRT 14917 16664 72972 0 377588 132.00
PST 11056 11786 53057 11057 23574 65.82
PSST 8320 8454 35629 8432 59100 45.57
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Table 2 – TEST15

N Method NIT NFV NFG NDC NMV Time

1000 MS 1946 9094 9038 3669 2023 5.86
ST 2738 13374 13030 0 53717 11.11
SST 2676 13024 12755 0 69501 11.39
GLRT 2645 12831 12547 0 61232 11.30
PST 3277 16484 16118 3278 31234 11.69
PSST 2269 10791 10613 2446 37528 8.41

5000 MS 7915 33607 33495 14099 8047 89.69
ST 11827 54699 53400 0 307328 232.70
SST 11228 51497 50333 0 366599 231.94
GLRT 10897 49463 48508 0 300580 214.74
PST 9360 41524 41130 9361 179166 144.40
PSST 8634 37163 36881 8915 219801 140.44
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Comments

Note that NFG is much greater than NFV in the first table since the Hessian
matrices are computed by using gradient differences. At the same time,
the problems in the second table are the sums of squares having the form

F = 1/2 fT (x)f(x)

and NFV denotes the total number of the vector f(x) evaluations. Since
f(x) is used in the expression

g(x) = JT (x)f(x),

where J(x) is the Jacobian matrix of f(x), NFG is comparable with NFV.
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Summary

To sum up, our computational experiments indicate that the shifted
Steihaug-Toint method:

● works well in connection with the second way of preconditioning, the
trust region step reached in this case is usually close to the optimum
step obtained by the Moré-Sorensen’s method;

● gives the best results in comparison with other iterative methods for
computing the trust region step.
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Thank you for your attention!
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