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1. Introduction
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General nonlinear programming problem

Consider the general nonlinear programming problem

(NP) x = arg min
x∈Rn

f(x)

subject to
cI(x) ≤ 0, cE(x) = 0,

where

cI(x) = [ci(x) : i ∈ I]T , I = {1, . . . , mI}
cE(x) = [ci(x) : i ∈ E]T , E = {mI + 1, . . . , mI + mE = m}.

We assume that the functions

f(x) : Rn → R, cI(x) : Rn → RmI , cE(x) : Rn → RmE

are twice continuously differentiable.
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KKT conditions for (NP)

The necessary KKT (Karush-Kuhn-Tucker) conditions for the solution of
problem (NP) have the following form:

g(x, u) = 0,

cI(x) ≤ 0, uI ≥ 0, uT
I cI(x) = 0,

cE(x) = 0,

where
g(x, u) = ∇f(x) + AI(x)uI + AE(x)uE ,

and
AI(x) = [∇ci(x) : i ∈ I], AE(x) = [∇ci(x) : i ∈ E].

Here
uI = [ui(x) : i ∈ I]T , uE = [ui(x) : i ∈ E]T

are vectors of Lagrange multipliers.
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The idea of interior point methods

We introduce of a slack vector

sI = [si(x) : i ∈ I]T

and transform original problem (NP) to the sequence of problems with the
logarithmic barrier function

(IP) x = arg min
(x,sI)∈Rn+mI

(

f(x) − µeT ln(SI)e
)

,

subject to
cI(x) + sI = 0, cE(x) = 0,

where µ > 0 is a barrier parameter, e is the vector with unit elements, and
SI = diag(si : i ∈ I).

● The logarithmic barrier term is used to ensure the inequality sI ≥ 0
implicitly.

● If µ = 0, then the KKT conditions for (IP) coincide with the KKT
conditions for (NP). Therefore µ → 0 is assumed.
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KKT conditions for (IP)

The necessary KKT conditions for the solution of problem (IP) have the
following form (primal-dual formulation):

g(x, u) = 0,

SIUIe − µe = 0,(1)

cI(x) + sI = 0,

cE(x) = 0,

where UI = diag(ui : i ∈ I). Inequalities sI > 0 and uI > 0 are required in
all iterations.

● condition sI > 0 is necessary for the definition of the logarithmic barrier
function,

● condition uI > 0 improves the properties of the linear system solved
and is necessary for the construction of an efficient preconditioner.



L.Lukšan, C.Matonoha, J.Vlček: Interior point method... 8

Newton’s method

Linearizing the primal-dual equations, we get one step of the Newton
method







G 0 AI AE

0 UI SI 0
AT

I I 0 0

AT
E 0 0 0













∆x
∆sI

∆uI

∆uE






= −







g
SIUIe − µe

cI + sI

cE






,(2)

where g = g(x, u) and

G = G(x, u) = ∇2f(x) +
∑

i∈I

ui∇2ci(x) +
∑

i∈E

ui∇2ci(x).

● The Hessian matrix G(x, u) is not usually given analytically, but
automatic or numerical differentiation is used instead.

● We assume that the matrix of system (2) is nonsingular.
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Description of algorithm

The algorithm for an interior point method can be roughly described in the
following form.

1. Let vectors x ∈ Rn, sI ∈ RmI , uI ∈ RmI , uE ∈ RmE such
that sI > 0, uI > 0 be given.

2. Let a barrier parameter µ > 0 be given.

3. Determine direction vectors ∆x, ∆sI , ∆uI , ∆uE by solving a linear
system equivalent to (2).

4. Choose a step-length 0 < α ≤ α.

5. Set
x := x + α∆x, sI := sI(α, ∆sI),

uI := uI(α, ∆uI), uE := uE + α∆uE ,

where sI(α, ∆sI) > 0 and uI(α, ∆uI) > 0 are functions of α depending
on ∆sI and ∆uI , which are chosen by a suitable strategy.

6. Determine a new barrier parameter µ > 0.
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2. Direction determination I.
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Active and inactive constraints

KKT condition (1) implies that SIUIe ≈ µe and if µ → 0, then either
ui → 0 or si → 0 holds for every index i ∈ I. Therefore, we can split the
set of inequality constraints to an active and inactive subsets.

Active: si ≤ εIui, i ∈ I – denoted by .̂, i.e. ĉI(x), ŝI , ûI .
Active constraints are those for which ci(x), i ∈ I, are close to zero,
where ĉI ∈ Rm̂I .

Inactive: si > εIui, i ∈ I – denoted by .̌, i.e. čI(x), šI , ǔI .
Inactive constraints are those for which ui, i ∈ I, are close to zero,
where ǔI ∈ Rm̌I .

Here εI > 0 is a suitable parameter and m̂I + m̌I = mI .

A general definition of the set of indices of active constraints:

Ē(x) = E ∪ {i ∈ I : ci(x) = 0}
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Elimination of ∆sI

System (2) is nonsymmetric with the dimension n + mE + 2mI . This
system can be symmetrized and reduced by the elimination of the vector
∆sI . One has

∆sI = −U−1
I SI(uI + ∆uI) + µU−1

I e

so that




G AI AE

AT
I −U−1

I SI 0

AT
E 0 0









∆x
∆uI

∆uE



 = −





g
cI + µU−1

I e
cE



 .(3)

Disadvantage: elements of matrix U−1
I SI can be unbounded, since ui → 0

if the i-th inequality constraint is inactive at the solution point.
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Elimination of inactive equations

By elimination of inactive equations we obtain

∆ǔI = Š−1
I ǓI(čI + ǍT

I ∆x) + µŠ−1
I e

so that




Ĝ ÂI AE

ÂT
I −Û−1

I ŜI 0

AT
E 0 0









∆x
∆ûI

∆uE



 = −





ĝ

ĉI + µÛ−1
I e

cE



 ,(4)

where

Ĝ = G + ǍI Š
−1
I ǓIǍ

T
I ,(5)

ĝ = g + ǍI Š
−1
I ǓI čI + µǍI Š

−1
I e.(6)
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Boundedness of matrices

Both matrices Ĝ and Û−1
I ŜI are bounded (if G and A are bounded) and if

the strict complementarity conditions

lim
µ→0

(si + ui) > 0, i ∈ I,

hold (recall that si > 0 and ui > 0), then one has

lim
µ→0

Û−1
I ŜI = 0.

Similarly, the matrix Š−1
I ǓI is bounded and if the strict complementarity

conditions hold, then
lim
µ→0

Š−1
I ǓI = 0.
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Splitting of ∆sI

At the same time, we can split equality for ∆sI into two equalities to obtain

∆ŝI = −Û−1
I ŜI(ûI + ∆ûI) + µÛ−1

I e,

∆šI = −(čI + ǍT
I ∆x + šI)

after re-arrangements.

Elimination of inactive constraints is quite a general approach:

● if εI is large enough, we obtain original system (3);
● if εI is close to zero, all constraints are inactive.

A choice of a suitable εI can improve effectiveness of the algorithm and
decrease the number of operations in an iterative method.
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3. Indefinitely preconditioned CGM
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Indefinite system

To simplify the notation, we rewrite system (4) containing only active
constraints in the form

Kd̄ =

[

Ĝ Â
ÂT −M̂

] [

d
d̂

]

=

[

b
b̂

]

= b̄,(7)

where Â = [ÂI , AE ] and M̂ = diag(M̂I , 0). Here M̂I = Û−1
I ŜI is a positive

definite diagonal matrix. We assume that matrix K is nonsingular, which
implies that AE has a full column rank (gradients of active constraints are
linearly independent).

System (7) is symmetric and indefinite of order n + m̂ = n + m̂I + mE . It
can be solved

● either directly by using the sparse Bunch-Parlett decomposition
● or iteratively by using Krylov-subspace methods for symmetric indefinite

systems.
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The preconditioner

We use a nonsingular preconditioner

C =

[

D̂ Â

ÂT −M̂

]

,

where D̂ is a positive definite diagonal matrix derived from the diagonal of
Ĝ. We restrict to the situation when matrix Ĝ − D̂ is non-singular (a usual
situation and the worst case in some sense). One has

KC−1 =

[

I + (Ĝ − D̂)P̂ (Ĝ − D̂)Q̂

0 I

]

,

where
P̂ = D̂−1 − D̂−1Â(ÂT D̂−1Â + M̂)−1ÂT D̂−1,

Q̂ = D̂−1Â(ÂT D̂−1Â + M̂)−1.
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Theorem 1.

Consider preconditioner C applied to system

Kd̄ = b̄

and assume that Ĝ − D̂ is nonsingular. Then matrix KC−1 has at least
m̂I + 2mE unit eigenvalues but at most m̂I + mE linearly independent
eigenvectors corresponding to these eigenvalues exist.

The other eigenvalues of matrix KC−1 are exactly eigenvalues of matrix

ZT
EG̃ZE(ZT

ED̃ZE)−1,

where [ZE, AE ] is a nonsingular square matrix,

ZT
EAE = 0, ZT

EZE = I

and where

G̃ = Ĝ + ÂIM̂
−1
I ÂT

I , D̃ = D̂ + ÂIM̂
−1
I ÂT

I .

If ZT
EG̃ZE is positive definite, then all eigenvalues are positive.
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Theorem 2.

Consider preconditioner C applied to system

Kd̄ = b̄

and assume that Ĝ − D̂ is nonsingular. Then the Krylov subspace K
defined by matrix KC−1 and vector r̄ ∈ Rn+m̂, where m̂ = m̂I + mE , has
a dimension of at most

min(n + 1, n − mE + 2).

Consequence: using a Krylov-subspace method we obtain a solution of
system Kd̄ = b̄ after min(n + 1, n − mE + 2) iterations at most.
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Algorithm PCG

d − given, d̂ := 0,
r := b − Ĝd − Âd̂, r̂ := b̂ − ÂT d + M̂d̂,
β := 0,

while ‖r‖ > ω‖b‖ or ‖r̂‖ > ω min(‖b̂‖, ‖ĉ‖) do

t̂ := (ÂT D̂−1Â + M̂)−1(ÂT D̂−1r − r̂),
t := D̂−1(r − Ât̂),
γ := rT t + r̂T t̂, β := βγ,
p := t + βp, p̂ := t̂ + βp̂,
q := Ĝp + Âp̂, q̂ := ÂT p − M̂p̂,
α := pT q + p̂T q̂, α := γ/α,
d := d + αp, d̂ := d̂ + αp̂,
r := r − αq, r̂ := r̂ − αq̂,
β := 1/γ

end while.
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Termination conditions

The parameter ω represents precision of the inner iteration. It should
satisfy the inequality

0 ≤ ω ≤ ω < 1,

which is necessary for the global convergence, and also ω → 0 as ‖b̄‖ → 0
should hold for assuring the superlinear rate of convergence. Algorithm
PCG terminates if

‖r‖ ≤ ω‖b‖, ‖r̂‖ ≤ ω‖b̂‖, ‖r̂‖ ≤ ω‖ĉ‖

hold simultaneously, where

ĉ =

[

ĉI + ŝI

cE

]

.

Inequality ‖r̂‖ ≤ ω‖ĉ‖ plays an essential role if εI is large. In this case,
elements of ûI can be small enough, implying a large norm of ĉI + µÛ−1

I e

(the first part of vector b̂). Thus the resulting equations are badly scaled
and the precision ‖r̂‖ ≤ ω‖b̂‖ is insufficient.
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Use of a Choleski decomposition

The matrix (ÂT D̂−1Â + M̂)−1 used in Algorithm PCG is not computed,
but the sparse Choleski decomposition (complete or incomplete) is used
instead. Unfortunately, this matrix can be dense when Â has dense rows.
Assume that ÂT = [ÂT

s , ÂT
d ] and D̂ = diag(D̂s, D̂d), where

M̂s = ÂT
s D̂−1

s Âs + M̂

is sparse and Âd consists of dense rows. Then

(ÂT D̂−1Â + M̂)−1 = (M̂s + ÂT
d D̂−1

d Âd)
−1 = M̂−1

s − M̂−1
s ÂT

d M̂−1
d ÂdM̂

−1
s ,

where
M̂d = D̂d + ÂdM̂

−1
s ÂT

d

is a (low-dimensional) dense matrix. Again the sparse Choleski
decomposition of matrix M̂s is used instead of its inversion.
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Theorem 3.

Consider Algorithm PCG with preconditioner C applied to system Kd̄ = b̄.
Assume that the initial d̄ is chosen in such a way that r̂ = 0 at the start of
the algorithm. Let matrix ZT

EG̃ZE be positive definite. Then:

1. Vector d∗ (the first part of vector d̄∗ which solves equation Kd̄ = b̄) is
found after n − mE iterations at most.

2. The algorithm cannot break down before d∗ is found.

3. Error ‖d − d∗‖ converges to zero at least R-linearly with quotient
√

κ − 1√
κ + 1

,

where κ is the spectral condition number of ZT
EG̃ZE(ZT

ED̃ZE)−1.

4. If d = d∗, then also d̂I = d̂∗
I and d∗

E can be determined by the formula

d∗
E = dE + (AT

ED̃−1AE)−1AT
ED̃−1r.
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4. Linear dependence of gradients of active
constraints
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Example

Let

c1(x) = −x1 ≤ 0

c2(x) = −x2 ≤ 0

c3(x) = x2
1 + 4x2

2 − 4 ≤ 0

c4(x) = (x1 − 2)2 + x2
2 − 5 ≤ 0

Let f(x) be such that x⋆ = [0, 1]T ∈ R2. Therefore Ē(x⋆) = {1, 3, 4} .
Now

∇c1(x
⋆) = [−1, 0]T , ∇c2(x

⋆) = [2x1, 8x2]
T = [0, 8]T ,

∇c3(x
⋆) = [2(x1 − 2), 2x2]

T = [−4, 2]T .

These vectors are linearly dependent at the solution point.
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Near singularity

In this case, system (7)

Kd̄ =

[

Ĝ Â
ÂT −M̂

] [

d
d̂

]

=

[

b
b̂

]

= b̄,

where
Â = [ÂI , AE ], M̂ = diag(M̂I , 0), M̂I = Û−1

I ŜI ,

or matrix
ÂT D̂−1Â + M̂

is singular or near singular, vector d̂ obtained from (7) tends to infinity and
the interior-point method usually fails.
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Perturbation of M̂

Motivated by Tikhonov regularization, we use a perturbation of M̂ to
eliminate singularity (or near singularity) of matrix ÂT D̂−1Â + M̂ .
Therefore, we solve equation

K(ε)d̄(ε) =

[

Ĝ Â
ÂT −(M̂ + εÊ)

] [

d(ε)

d̂(ε)

]

=

[

b
b̂

]

= b̄,(8)

and use a preconditioner

C(ε) =

[

D̂ Â

ÂT −(M̂ + εÊ)

]

,

where Ê is a positive semidefinite diagonal matrix (e.g. Ê = I) and ε > 0.
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Theorem 4.

Consider perturbed system (8) with non-singular Ĝ. Then

1

2

∂(d̂T (ε)Êd̂(ε))

∂ε
= −d̂T (ε)Ê(ÂT Ĝ−1Â + M̂ + εÊ)−1Êd̂(ε).

If there is a number ε̄ ≥ 0 such that

ÂT Ĝ−1Â + M̂ + εÊ ≻ 0 ∀ε ≥ ε̄,

then the above expression is negative (if d̂(ε) 6= 0) ∀ε ≥ ε̄ and

d̂T (ε)Êd̂(ε) → 0 if ε → ∞.
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Properties of regularization

● Singularity (or near singularity) of matrix ÂT D̂−1Â + M̂ is usually
detected during the Choleski decomposition. We choose ε and if the
Gill-Murray modification of the Choleski decomposition is used, then a
suitable matrix Ê is obtained as a by-product.

● The regularization described above deteriorates properties of
preconditioner C(ε). If Ê = diag(ÊI , EE), where EE is non-singular,
then the situation is the same as in case all constraints are inequalities.
Thus, the Krylov subspace has a dimension of at most n + 1 and using
Krylov-subspace method we obtain the solution after n + 1 iterations at
most.
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5. Numerical experiments
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Test problems

To see the effect of regularization, numerical experiments were performed
by using a set of test problems obtained as modifications of 18 test
problems for equality constrained minimization which can be downloaded
from

http://www.cs.cas.cz/luksan/test.html

We have used inequalities

x ≤ 0 and c(x) ≤ 0

and all problems have dimension n = 1000.
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No regularization, ε = 0

P NIT NFV NFG F C G
1 21 21 126 999.000 0.0D+00 0.2D-15
2 22 22 308 24325.8 0.0D+00 0.3D-08
3 19 19 114 0.465461E-04 0.0D+00 0.2D-06
4 24 31 144 688.717 0.0D+00 0.7D-06
5 13 13 130 0.612895E-11 0.0D+00 0.3D-06
6 33 33 462 0.508804E-11 0.0D+00 0.2D-07
7 21 21 147 -13.8978 0.0D+00 0.2D-09
8 174 298 1218 82510.7 0.4D-15 0.1D-06
9 44 47 308 100.389 0.6D-09 0.1D-07

10 20 25 120 352.426 0.0D+00 0.1D-08
11 12 12 72 996.000 0.0D+00 0.7D-08
12 16 16 112 0.249966E-07 0.0D+00 0.3D-06
13 40 163 320 0.238126E+25 0.6D+00 0.1D+07
14 23 28 161 996.000 0.0D+00 0.4D-10
15 37 37 222 0.941987E-09 0.0D+00 0.2D-07
16 17 17 85 1494.00 0.1D-12 0.3D-06
17 23 24 115 4482.00 0.1D-11 0.7D-08
18 18 18 90 1494.00 0.6D-09 0.5D-06
Σ 577 845 4254 TIME=6.89
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Regularization with ε = 10−14

P NIT NFV NFG F C G
1 21 21 126 999.000 0.0D+00 0.2D-15
2 22 22 308 24325.8 0.0D+00 0.3D-08
3 19 19 114 0.465461E-04 0.0D+00 0.2D-06
4 24 31 144 688.717 0.0D+00 0.7D-06
5 13 13 130 0.612895E-11 0.0D+00 0.3D-06
6 33 33 462 0.508804E-11 0.0D+00 0.2D-07
7 21 21 147 -13.8978 0.0D+00 0.2D-09
8 174 298 1218 82510.7 0.4D-15 0.1D-06
9 44 47 308 100.389 0.6D-09 0.1D-07

10 20 25 120 352.426 0.0D+00 0.1D-08
11 12 12 72 996.000 0.0D+00 0.7D-08
12 16 16 112 0.249966E-07 0.0D+00 0.3D-06
13 37 159 296 0.430686E+15 0.3D+01 0.7D+05
14 23 28 161 996.000 0.0D+00 0.4D-10
15 37 37 222 0.941987E-09 0.0D+00 0.2D-07
16 17 17 85 1494.00 0.1D-12 0.3D-06
17 23 24 115 4482.00 0.1D-11 0.7D-08
18 18 18 90 1494.00 0.6D-09 0.5D-06
Σ 574 841 4230 TIME=6.86
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Regularization with ε = 10−10

P NIT NFV NFG F C G
1 21 21 126 999.000 0.0D+00 0.2D-15
2 22 22 308 24325.8 0.0D+00 0.3D-08
3 19 19 114 0.465461E-04 0.0D+00 0.2D-06
4 24 31 144 688.717 0.0D+00 0.7D-06
5 13 13 130 0.612895E-11 0.0D+00 0.3D-06
6 33 33 462 0.508804E-11 0.0D+00 0.2D-07
7 21 21 147 -13.8978 0.0D+00 0.2D-09
8 174 298 1218 82510.7 0.4D-15 0.1D-06
9 44 47 308 100.389 0.6D-09 0.1D-07

10 20 25 120 352.426 0.0D+00 0.1D-08
11 12 12 72 996.000 0.0D+00 0.7D-08
12 16 16 112 0.249966E-07 0.0D+00 0.3D-06
13 1893 2000 15152 0.749888E+13 0.3D+01 0.1D-06
14 23 28 161 996.000 0.0D+00 0.4D-10
15 37 37 222 0.941987E-09 0.0D+00 0.2D-07
16 18 18 90 1494.00 0.3D-13 0.1D-06
17 23 24 115 4482.00 0.2D-11 0.6D-07
18 17 17 85 1494.00 0.3D-08 0.3D-06
Σ 2430 2682 19086 TIME=14.84
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Regularization with ε = 10−6

P NIT NFV NFG F C G
1 21 21 126 999.000 0.0D+00 0.2D-15
2 22 22 308 24325.8 0.0D+00 0.3D-08
3 19 19 114 0.465461E-04 0.0D+00 0.2D-06
4 24 31 144 688.717 0.0D+00 0.7D-06
5 13 13 130 0.612895E-11 0.0D+00 0.3D-06
6 33 33 462 0.508804E-11 0.0D+00 0.2D-07
7 21 21 147 -13.8978 0.0D+00 0.2D-09
8 1875 2000 13132 82510.7 0.2D-05 0.2D-08
9 44 47 308 100.389 0.6D-09 0.1D-07

10 20 25 120 352.426 0.0D+00 0.1D-08
11 12 12 72 996.000 0.0D+00 0.7D-08
12 16 16 112 0.249966E-07 0.0D+00 0.3D-06
13 1941 2000 15536 0.174126E+10 0.3D+01 0.8D-07
14 23 28 161 996.000 0.0D+00 0.4D-10
15 37 37 222 0.941987E-09 0.0D+00 0.2D-07
16 18 18 90 1494.00 0.3D-14 0.1D-06
17 19 19 95 4482.00 0.2D-09 0.7D-09
18 17 17 85 1494.00 0.3D-08 0.7D-09
Σ 4175 4379 31364 TIME=23.73
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Regularization with ε = 10−2

P NIT NFV NFG F C G
1 26 27 156 999.000 0.4D-09 0.2D-06
2 22 22 308 24325.8 0.0D+00 0.3D-08
3 19 19 114 0.465461E-04 0.0D+00 0.2D-06
4 28 30 168 688.717 0.0D+00 0.9D-06
5 13 13 130 0.612895E-11 0.0D+00 0.3D-06
6 238 368 3332 0.156388E-11 0.0D+00 0.2D-06
7 22 22 154 -13.8978 0.0D+00 0.2D-08
8 490 2008 3437 82452.2 0.2D-01 0.8D-01
9 44 47 308 100.389 0.6D-09 0.1D-07

10 26 31 156 352.426 0.0D+00 0.2D-09
11 12 12 72 996.000 0.0D+00 0.7D-08
12 16 16 112 0.249966E-07 0.0D+00 0.3D-06
13 1993 2000 15952 102605. 0.3D+01 0.6D-07
14 44 52 308 996.000 0.0D+00 0.9D-06
15 82 92 492 0.807095E-08 0.0D+00 0.8D-06
16 18 18 90 1494.00 0.3D-14 0.1D-06
17 18 18 90 4482.00 0.4D-09 0.3D-08
18 15 15 75 1494.00 0.4D-07 0.2D-08
Σ 3126 4810 25454 TIME=46.65
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Conclusion

● G positive definite – additional advantageous preconditioners
G indefinite or singular – preconditioner C seems to be most robust

● ??? Effective iterative methods for solving linear KKT systems:
If the system solved is very ill-conditioned (mI ≫ n) then the fill-in can
be enormously great and the accurate solution can be unsuitable –
directions are too large or almost perpendicular to the gradient of the
merit function (→ inexact solution is preferred).

● Regularization reliably eliminates the numerical explosion caused by
linear dependence of active constraints and sometimes gives the
solution when the standard iterative method fails (future research).

● Active constraints – solved inaccurately by the PKS method;
Inactive constraints – obtained by direct elimination.
→ equations with bounded coefficients, suitable for iterative solvers,
dimension of the system solved is usually decreased.

● Suitable εI (10−1, 10−2, 1) can improve effectiveness of the algorithm.
● Regularization – better examples with linear dependence of gradients of

active constraints would be more convenient.



L.Lukšan, C.Matonoha, J.Vlček: Interior point method... 39

6. Direction determination II.
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Symmetrization

System (2) (linearizing the primal-dual equations) can be symmetrized
with elimination of inactive constraints but without elimination of the vector
∆sI .









Ĝ 0 ÂI AE

0 I D̂I 0

ÂT
I D̂I 0 0

AT
E 0 0 0















∆x
D̂−1

I ∆ŝI

∆ûI

∆uE






= −









ĝ

D̂I ĝs

ĉI + ŝI

cE









,(9)

where

D̂I = (ŜI Û
−1
I )1/2, D̂I ĝs = (ŜIÛI)

1/2e − µ(ŜIÛI)
−1/2e,

Ĝ = G + ǍI Š
−1
I ǓIǍ

T
I , ĝ = g + ǍI Š

−1
I ǓI čI + µǍI Š

−1
I e

(same as above).
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Use of trust region methods

General form of (9):
[

B A
AT 0

] [

d
du

]

= −
[

g
h

]

(10)

If we consider the subproblem:

min Q(d) =
1

2
dT Bd + gT d subject to AT d + h = 0,(11)

then the Lagrange function has the form

L(d) = Q(d) + dT
u (AT d + h)

where du is a Lagrange multiplier. The optimality conditions has exactly
form (10).

We can use a trust region method to (11) with a constraint

‖d‖ ≤ ∆.
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Incompatibility of constraints

∆x

ATd+h=0

[x,s]

We will use the idea of Byrd and Omojokun, to make both constraints
compatible and secure a sufficient decrease of Q(d) :

d = dV + dH

(the sum of vertical and horizontal steps).
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Vertical step

First, consider the problem

min ‖AT d + h‖ subject to ‖d‖ ≤ δ∆

for 0 < δ < 1 (e.g. δ = 0.8), which is equivalent to

min QV (d) =
1

2
dT AAT d + hT AT d subject to ‖d‖ ≤ δ∆.

A solution is the vertical step dV and there exists w such that dV = Aw.

The algorithm (the dogleg method) works with matrices AT A and its
inverse so we suppose that A has a full column rank.
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Horizontal step

Reformulation of the original problem:

min QH(d) =
1

2
dT Bd + gT d subject to AT d = AT dV , ‖d‖ ≤ ∆.

The constraints are compatible and for a solution dH it follows that

AT dH = 0, dH = ZdZ , dT
V dH = 0

for some vector dZ where the columns of Z form a basis of the null space
of AT . Substitution into QH leads to a problem

min QZ(d) =
1

2
dT BZd + gT

Zd subject to ‖Zd‖ ≤ ∆̄,

where

BZ = ZT BZ, gZ = ZT (BdV + g), ∆̄ =
√

∆2 − ‖dV ‖2.

The CGM method is used to solve this problem whose solution is dZ .
Finally, the horizontal step is dH = ZdZ .
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Computation of Lagrange multipliers

● The use of dH = ZdZ (instead of dZ ) leads to multiplication by the
matrix

Z(ZT Z)−1ZT = I − A(AT A)−1AT

so the matrix Z need not be computed.
● Back to (10):

[

B A
AT 0

] [

d
du

]

= −
[

g
h

]

Lagrange multipliers du cannot be computed from the CG method.
From (10) we have

Adu = −(g + Bd) ≡ −r

where r is a residuum. Thus

du = −(AT A)−1AT r

as a solution of a least squares problem.
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7. Linear dependence of gradients of active
constraints
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Regularized problem

When the gradients of active constraints are linearly dependent, the
matrix A doesn’t have the full column rank. We will consider the problem

min Q(d, p) =
1

2
dT Bd + gT d +

1

2
pT p s.t. AT d + δp + h = 0,(12)

where δ is some small number. The optimality conditions have the form
(du is a Lagrange multiplier):

Bd + g + Adu = 0

p + δdu = 0

AT d + δp + h = 0

which leads to a system
[

B A
AT −δ2I

] [

d
du

]

= −
[

g
h

]
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Conversion into a standard form

Denote

B̃ =

[

B

I

]

, Ã =

[

A

δI

]

, g̃ =

[

g

0

]

, d̃ =

[

d

p

]

Then problem (12) becomes

min Q(d̃) =
1

2
d̃T B̃d̃ + g̃T d̃ s.t. ÃT d̃ + h = 0.

The matrix Ã has the full column rank and we can use a theory based on
vertical and horizontal steps.
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Conclusion

● Trust region methods are an effective tool for solving optimization
problems especially when the objective function is nonconvex or the
problem is ill-conditioned.

● They are globally convergent.
● So their principle is used for computation of direction vectors.
● Future research: to use their good properties also for the cases when

the gradients of active constraints are linearly dependent (suitable
regularized subproblem).
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Thank you for your attention!
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