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1. The l1 optimization problem
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Introduction

Consider the l1 optimization problem – minimize the function

F (x) =

m
∑

i=1

|fi(x)|,(1)

where

● fi : Rn → R, 0 ≤ i ≤ m, are smooth functions (e.g. twice continuously
differentiable on a sufficiently large convex compact set D) depending
on ni variables;

● the function F (x) is partially separable, which means that n and
m = O(n) are large and ni = O(1), 0 ≤ i ≤ m, are small.
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Equivalent problem

The minimization of F is equivalent to the sparse nonlinear programming
problem with n + m variables x ∈ Rn, z ∈ Rm:

minimize

m
∑

i=1

zi subject to − zi ≤ fi(x) ≤ zi, 1 ≤ i ≤ m.(2)

The necessary first-order (Karush-Kuhn-Tucker) conditions have the form

m
∑

i=1

ui∇fi(x) = 0, zi = |fi(x)|, |ui| ≤ 1, and(3)

ui =
fi(x)

|fi(x)|
if |fi(x)| > 0

where ui, 1 ≤ i ≤ m, are Lagrange multipliers. This problem can be
solved by an arbitrary nonlinear programming method utilizing sparsity:

sequential linear programming, sequential quadratic programming,
interior-point, nonsmooth equation
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Unconstrained problem

We introduce a trust-region interior-point method that utilizes a special
structure of the l1 optimization problem. Constrained problem (2) is
replaced by a sequence of unconstrained problems

minimize B(x, z; µ) =
m
∑

i=1

zi − µ
m
∑

i=1

log(z2
i − f2

i (x))(4)

with a barrier parameter 0 < µ ≤ µ, where we assume that

zi > |fi(x)|, 1 ≤ i ≤ m,

and µ → 0 monotonically. Here

B(x, z; µ) : Rn+m → R

is a function of n + m variables x ∈ Rn, z ∈ Rm.
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Iteration process

The interior-point method is a trust-region modification of the Newton
method and is iterative, so it generates a sequence of points
xk ∈ Rn, k ∈ N , such that

xk+1 = xk + αdx
k, zk+1 = zk + αdz

k,

where dx
k, dz

k are direction vectors and α > 0 is a suitable step size.

In order to compute direction vectors, we proceed from necessary
conditions for a minimum of B(x, z; µ). We obtain a system of n + m
nonlinear equations which is solved by the Newton method – this method
uses second-order derivatives.

An approximation of the Hessian matrix is computed by gradient
differences which can be carried out efficiently if this matrix is sparse.
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2. How to compute direction vectors



L.Lukšan, C.Matonoha, J.Vlček 9

Necessary conditions for a minimum

Differentiating B(x, z; µ) =
∑m

i=1
zi − µ

∑m

i=1
log(z2

i − f2
i (x)) we obtain

necessary conditions for a minimum:

∂B(x, z; µ)

∂x
= A(x)u(x, z; µ) = 0,(5)

∂B(x, z; µ)

∂z
= Z−1f(x) − u(x, z; µ) = 0,(6)

where

A(x) = [g1(x), . . . , gm(x)], gi(x) = ∇fi(x), Z = diag(z1, . . . , zm),

u(x, z; µ) = [u1(x, z1; µ), . . . , um(x, zm; µ)]T , ui(x, zi; µ) =
2µfi(x)

z2
i − f2

i (x)
.

System of n + m nonlinear equations (5)-(6) can be solved by the
Newton method to obtain increments dx

k and dz
k.
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Condition u(x, z;µ) = Z−1f(x)

The structure of B(x, z; µ) allows us to obtain a minimizer z(x; µ) ∈ R of
B(x, z; µ) for a given x ∈ Rn. The function B(x, z; µ) (with x fixed) has a
unique stationary point which is its global minimizer. This point is
characterized by the equations

u(x, z; µ) = Z−1f(x) ⇔ z2
i (x; µ) − f2

i (x) = 2µzi(x; µ)(7)

which have the solutions

zi(x; µ) = µ +
√

µ2 + f2
i (x), 1 ≤ i ≤ m.(8)

Assuming z = z(x; µ) we denote B(x; µ) = B(x, z(x; µ); µ) and

ui(x; µ) =
fi(x)

zi(x; µ)
=

fi(x)

µ +
√

µ2 + f2
i (x)

, 1 ≤ i ≤ m.(9)

In this case, the barrier function B(x; µ) depends only on x. In order to
obtain a minimizer (x, z) ∈ Rn+m of B(x, z; µ), it suffices to minimize
B(x; µ) over Rn. Note that B(x; µ) is bounded from below if µ is fixed.
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Condition A(x)u(x;µ) = 0

Lemma 1 It holds

∇B(x; µ) = A(x)u(x; µ),(10)

∇2B(x; µ) = G(x; µ) + A(x)V (x; µ)AT (x),(11)

where

G(x; µ) =

m
∑

i=1

ui(x; µ)∇2fi(x),

V (x; µ) = diag(v1(x; µ), . . . , vm(x; µ)), vi(x; µ) =
2µ

z2
i (x; µ) + f2

i (x)
.

Lemma 2 Let a vector d ∈ Rn solve the equation

∇2B(x; µ)d = −g(x; µ),(12)

where g(x; µ) = ∇B(x; µ) 6= 0. If the matrix G(x; µ) is positive definite,
then dT g(x; µ) < 0 , i.e. the direction vector d is descent for B(x; µ).
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Line-search vs. trust-region

The vector d ∈ Rn obtained by solving (12) is descent for B(x; µ) if the
matrix G(x; µ) is positive definite. Unfortunately, the positive definiteness
of this matrix is not assured in a non-convex case, which causes that the
standard line-search methods for computing d cannot be used. For this
reason, the trust-region methods were developed.

There are two basic possibilities, either a trust-region approach or a
line-search strategy with suitable restarts, which eliminate this
insufficiency. We have implemented and tested both these possibilities
and our tests have shown that the first possibility is more efficient.

Trust-region methods use a direction vector obtained as an approximate
minimizer of the quadratic subproblem with a trust region radius ∆.
A computed direction vector d ≡ dx

k serves for obtaining a new point

xk+1 = xk + d (α = 1).
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3. Implementation details
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Quadratic subproblem

The quadratic subproblem has the form

minimize Q(d) =
1

2
dT∇2B(x; µ)d + gT (x; µ)d s.t. ‖d‖ ≤ ∆.(13)

Denoting

ρ(d) =
B(x + d; µ) − B(x; µ)

Q(d)
=

actual decrease of B(x; µ)

predicted decrease of B(x; µ)
,(14)

we set

x+ = x if ρ(d) < ρ or x+ = x + d if ρ(d) ≥ ρ

and update the trust region radius in such a way that ∆ ≤ ∆ and

β‖d‖ ≤ ∆+ ≤ β‖d‖ if ρ(d) < ρ or ∆ ≤ ∆+ ≤ γ∆ if ρ(d) ≥ ρ,

where 0 < ρ < ρ < 1 and 0 < β ≤ β < 1 < γ.
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Direction determination 1 – Moré-Sorensen

We have used two approaches based on direct decompositions of the
matrix ∇2B, the Moré-Sorensen’s optimum step method and the dogleg
method of Dennis and Mei.

The optimum step method computes a more accurate solution of (13) by
using the Newton method applied to the nonlinear equation

1

‖d(λ)‖
−

1

∆
= 0 where (∇2B + λI)d(λ) = −g.(15)

This system is solved using the Gill-Murray decomposition of the matrix
(∇2B + λI). This way follows from the KKT conditions for (13). Since the
Newton method applied to (15) can be unstable, the safeguards (lower
and upper bounds to λ) are usually used.
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Direction determination 2 – dogleg method

The dogleg method seeks d as a LC of the Cauchy and Newton steps

dC = −(gT g/gT∇2Bg)g, dN = −(∇2B)−1g.

The Newton step is computed by using either

● the sparse Gill-Murray decomposition which has the form

∇2B + E = LDLT = RT R,

where E is a positive semidefinite diagonal matrix (which is equal to
zero when ∇2B is positive definite), L is a lower triangular matrix, D is a
positive definite diagonal matrix and R is an upper triangular matrix; or

● the sparse Bunch-Parlett decomposition which has the form

∇2B = PLMLT P T ,

where P is a permutation matrix, L is a lower triangular matrix and M is
a block-diagonal matrix with 1 × 1 or 2 × 2 blocks (which is indefinite
when ∇2B is indefinite).
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Maximum step length ∆

The use of the maximum step length ∆ has no theoretical significance but
is very useful for practical computations:

● The problem functions can sometimes be evaluated only in a relatively
small region (if they contain exponentials) so that the maximum
step-length is necessary.

● The problem can be very ill-conditioned far from the solution point, thus
large steps are unsuitable.

● If the problem has more local solutions, a suitably chosen maximum
step-length can cause a local solution with a lower value of F to be
reached.

Therefore, the maximum step-length ∆ is a parameter which is most
frequently tuned.
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Update of µ

A very important part is the update of the barrier parameter µ. There are
two requirements which play opposite roles:

1. µ → 0 should hold since this is the main property of every
interior-point method.

2. ∇2B(x; µ) can be ill-conditioned if µ is too small because

‖∇2B(x; µ)‖ ≤ C/µ (C is a constant).

Thus the lower bound µ for µ is used.

We have tested various possibilities for the barrier parameter update
including simple geometric sequences which were proved to be
unsuitable. Better results were obtained by setting

µ+ = max(µ, ‖g‖2) if ρ(d) ≥ ρ and ‖g‖2 ≤ τµ,

µ+ = µ otherwise,

where 0 < τ < 1.
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4. Numerical experiments
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Numerical experiments 1

The primal interior-point method was tested by using two collections of 22
relatively difficult problems with an optional dimension chosen from
[Lukšan,Vlček, V767, 1998], which can be downloaded from the web page

www.cs.cas.cz/˜luksan/test.html

as TEST 14 and TEST 15. The functions fi(x), 1 ≤ i ≤ m, serve for
defining the objective function

F (x) =
∑

1≤i≤m

|fi(x)|.(16)

The first set of the tests concerns a comparison of interior-point methods
with various trust-region and line-search [Lukšan,Matonoha,Vlček, V941, 2005]

strategies and the bundle variable metric method [Lukšan,Vlček, PJO, 2006].
Medium-size test problems with 200 variables are used. The results of
computational experiments are reported in two tables where only
summary results (over all 22 test problems) are given.
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Columns of tables

Here Mis the method used: T1 – the dogleg method with the Gill-Murray
decomposition, T2 – the dogleg method with the Bunch-Parlett
decomposition, T3 – the optimum step method with the Gill-Murray
decomposition, L – the line-search method with restarts, B – the bundle
variable metric method; NIT is the total number of iterations, NFV is the
total number of function evaluations, NFGis the total number of gradient
evaluations, NRis the total number of restarts, NL is the number of
problems for which the best known local minimizer was not found (even if
the parameter ∆ was tuned), NF is the number of problems for which no
local minimizer was found (either a premature termination occurred or the
number of function evaluations exceeded the upper bound), NT is the
number of problems for which the parameter ∆ was tuned (for removing
overflows and obtaining the best known local minimum), and Time is the
total computational time in seconds.
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TEST 14,15 – 22 problems with 200 variables

M NIT NFV NFG NR NL NF NT Time

T1 – dogleg GM 2784 3329 23741 1 - - 4 3.70
T2 – dogleg BP 2392 2755 19912 2 - 1 8 3.19

T3 – optimum GM 3655 4161 32421 4 1 1 7 6.52
L – line-search 5093 12659 30350 1 1 - 6 4.58
B – bundle VM 34079 34111 34111 22 1 1 11 25.72

Table 1: TEST 14 – 22 problems with 200 variables

M NIT NFV NFG NR NL NF NT Time

T1 – dogleg GM 3331 4213 18989 17 - - 6 3.74
T2 – dogleg BP 3170 4027 17452 17 - 1 12 3.68

T3 – optimum GM 5424 6503 31722 11 1 1 10 7.83
L – line-search 8183 20245 52200 36 2 - 9 10.90
B – bundle VM 34499 34745 34745 22 1 - 11 13.14

Table 2: TEST 15 – 22 problems with 200 variables
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Numerical experiments 2

The second set of tests concerns a comparison of the interior-point
method, realized as the dogleg method with the Gill-Murray decomposition,
with the bundle variable metric method. Large-scale test problems with
1000 variables are used.

The results of computational experiments are given in two tables, where P
is the problem number, NIT is the number of iterations, NFV is the number
of function evaluations, NFGis the number of gradient evaluations, and F
is the function value reached. The last row of every table contains the
summary results including the total computational time in seconds.

The bundle variable metric method was chosen for the comparison since it
is based on a quite different principle and can also be used for the large
sparse l1 optimization.
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TEST 14 – 22 problems with 1000 variables

Trust-region interior-point method Bundle variable metric method

P NIT NFV NFG F NIT NFV NFG F

1 1594 1598 6380 0.166502E-09 7819 7842 7842 0.174023E-20
2 415 516 2912 0.106432E-08 127 130 130 0.735523E-17
3 32 33 231 0.604855E-07 89 89 89 0.359364E-14
4 27 39 196 269.499 81 81 81 269.499
5 30 31 186 0.107950E-06 39 39 39 0.122456E-14
6 32 33 462 0.611870E-07 100 100 100 0.110358E-12
7 18 20 171 336.937 211 211 211 336.937
8 18 19 342 761774. 36 39 39 761774.
9 212 259 3834 327.680 6181 6181 6181 327.682

10 970 1176 17460 0.386416E-01 14369 14369 14369 0.740271E-01
11 82 90 498 10.7765 319 319 319 10.7765
12 35 36 144 982.273 115 117 117 982.273
13 27 28 112 0.277182E-06 16 17 17 0.139178E-18
14 1 12 6 0.129382E-08 3 3 3 0.129382E-08
15 202 246 812 1.96106 3948 3957 3957 1.97013
16 161 169 972 0.435729E-15 4505 4556 4556 0.475529E-03
17 484 564 2910 0.165706E-11 441 443 443 0.857271E-06
18 2093 2538 12564 0.105340E-05 1206 1216 1216 0.129694E-03
19 15 16 96 59.5986 182 182 182 59.5986
20 1226 1529 7362 0.154869E-11 7828 7830 7830 0.102202E-04
21 21 22 132 2.13866 29 30 30 2.13866
22 1423 1770 8544 1.00000 337 341 341 1.00000

Σ 9118 10774 66332 Time =42.56 47981 48092 48092 Time =155.67
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TEST 15 – 22 problems with 1000 variables

Trust-region interior-point method Bundle variable metric method

P NIT NFV NFG F NIT NFV NFG F

1 1464 1477 5860 0.123345E-12 359 540 540 0.815757E-08
2 121 181 605 4.00000 453 473 473 0.153343E-07
3 27 31 168 0.775716E-09 114 114 114 0.374913E-08
4 65 76 264 648.232 53 54 54 648.232
5 6 7 42 0.655031E-14 285 285 285 0.422724E-05
6 8 9 126 0.754396E-13 560 560 560 0.649530E-08
7 73 111 296 12029.9 542 650 650 12029.9
8 83 100 252 0.230723E-06 939 942 942 0.380433E-03
9 532 609 3731 2777.75 4428 4429 4429 2780.11

10 103 148 618 658.048 1389 1389 1389 658.048
11 3452 3674 13812 0.821565E-14 411 454 454 0.838373E-09
12 652 773 3918 3117.36 1879 1882 1882 3125.85
13 165 212 996 14808.8 727 728 728 14808.8
14 162 201 1134 566.112 514 514 514 566.112
15 67 93 476 181.926 654 654 654 181.926
16 268 328 1883 66.5333 1376 1376 1376 66.5333
17 122 147 1107 0.146536E-13 9092 9092 9092 0.337978E-08
18 78 89 474 0.619504E-13 3160 3160 3160 0.754900
19 29 31 330 0.382360E-12 15933 15944 15944 0.239244E-08
20 69 86 420 0.131734E-10 1509 1699 1699 0.756975E-08
21 118 195 708 1326.92 425 426 426 1327.95
22 80 112 486 2993.36 9875 9875 9875 2993.37

Σ 7744 8690 37706 Time =30.03 54677 55240 55240 Time =155.90
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5. Conclusion
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Conclusion

The results introduced in tables indicate the following:

● the trust-region strategies are more efficient than the restarted
line-search strategies in connection with the interior-point method for l1
optimization;

● the trust-region interior-point method T1 (dogleg GM) is less sensitive to
the choice of parameters and requires a lower number of iterations and
a shorter computational time in comparison with the bundle variable
metric method B;

● method T1 also finds the best known local minimum (if l1 problems have
several local solutions) more frequently (see the column NL in tables).

We believe that the efficiency of the trust-region interior-point method
could be improved by using a better procedure for the barrier parameter
update.
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6. Trust-region methods
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Introduction

Consider a general problem

min F (x), x ∈ Rn,

where F : Rn → R is a twice continuously differentiable objective
function bounded from below (in the l1 problem F ≡ B(x; µ)). Basic
optimization methods (trust-region as well as line-search methods)
generate points xi ∈ Rn, i ∈ N , in such a way that x1 is arbitrary and

xi+1 = xi + αidi, i ∈ N ,(17)

where di ∈ Rn are direction vectors and αi > 0 are step sizes.
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Notation

For a description of trust-region methods we define the quadratic function

Qi(d) =
1

2
dT Bid + gT

i d

which locally approximates the difference F (xi + d) − F (xi), the vector

ωi(d) = (Bid + gi)/‖gi‖

for the accuracy of a computed direction, and the number

ρi(d) =
F (xi + d) − F (xi)

Qi(d)

for the ratio of actual and predicted decrease of the objective function.
Here gi = g(xi) = ∇F (xi) and Bi ≈ ∇2F (xi) is an approximation of the
Hessian matrix at the point xi ∈ Rn.

Trust-region methods are based on approximate minimizations of Qi(d) on
the balls ‖d‖ ≤ ∆i followed by updates of radii ∆i > 0.
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Description of TR methods

Direction vectors di ∈ Rn are chosen to satisfy the conditions

‖di‖ ≤ ∆i,(18)

‖di‖ < ∆i ⇒ ‖ωi(di)‖ ≤ ω,(19)

−Qi(di) ≥ σ‖gi‖min(‖di‖, ‖gi‖/‖Bi‖),(20)

where 0 ≤ ω < 1 and 0 < σ < 1. Step sizes αi ≥ 0 are selected so that

ρi(di) ≤ 0 ⇒ αi = 0,(21)

ρi(di) > 0 ⇒ αi = 1.(22)

Trust-region radii 0 < ∆i ≤ ∆ are chosen in such a way that
0 < ∆1 ≤ ∆ is arbitrary and

ρi(di) < ρ ⇒ β‖di‖ ≤ ∆i+1 ≤ β‖di‖,(23)

ρi(di) ≥ ρ ⇒ ∆i ≤ ∆i+1 ≤ ∆,(24)

where 0 < β ≤ β < 1 and 0 < ρ < 1.
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Crucial part

A crucial part of each trust-region method is a direction determination.
There are various commonly known methods for computing direction
vectors satisfying conditions (18)-(20).

How to compute di ?

To simplify the notation, the major index i is omitted.
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7. Computation of the direction vector
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Moré-Sorensen 1983

The most sophisticated method is based on a computation of the optimal
locally constrained step. In this case, the vector d ∈ Rn is obtained by
solving the subproblem

minimize Q(d) =
1

2
dT Bd + gT d subject to ‖d‖ ≤ ∆.(25)

Necessary and sufficient conditions for this solution are

‖d‖ ≤ ∆, (B + λI)d = −g, B + λI � 0, λ ≥ 0, λ(∆ − ‖d‖) = 0,

where λ is a Lagrange multiplier. The MS method is based on solving the
nonlinear equation

1

‖d(λ)‖
=

1

∆
with (B + λI)d(λ) + g = 0

by the Newton’s method using the Choleski decomposition of B + λI.
This method is very robust but requires 2-3 Choleski decompositions for
one direction determination on the average.
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Powell 1970, Dennis-Mei 1975

Simpler methods are based on minimization of Q(d) on the
two-dimensional subspace containing the Cauchy and Newton steps

dC = −
gT g

gT Bg
g, dN = −B−1g.

The most popular is the dogleg method where

d = dN if ‖dN‖ ≤ ∆

and
d = (∆/‖dC‖)dC if ‖dC‖ ≥ ∆.

In the remaining case, d is a combination of dC and dN such that
‖d‖ = ∆. This method requires only one Choleski decomposition for one
direction determination.
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Steihaug 1983, Toint 1981

If B is not sufficiently small or sparse or explicitly available, then it is either
too expensive or not possible to compute its Choleski factorization. In this
case, methods based on matrix-vector multiplications are more
convenient.

ST is a technique for finding an approximate solution of (25) that does not
require the exact solution of a linear system but still produce an
improvement on the Cauchy point. This implementation is based on the
CG algorithm for solving the linear system Bd = −g. We either obtain an
unconstrained solution with a sufficient precision or stop on the
trust-region boundary (if either a negative curvature is encountered or the
constraint is violated). This method is based on the fact that

Q(dk+1) < Q(dk) and ‖dk+1‖ > ‖dk‖

hold in the subsequent CG iterations if the CG coefficients are positive
and no preconditioning is used. For SPD preconditioner C we have

‖dk+1‖C > ‖dk‖C with ‖dk‖
2
C = dT

k Cdk.
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Multiple dogleg

The CG steps can be combined with the Newton step dN = −B−1g in
the multiple dogleg method. Let k ≪ n (usually k = 5 ) and dk be a
vector obtained after k CG steps of the Steihaug-Toint method. If
‖dk‖ < ∆, we use dk instead of dC = d1 in the dogleg method.
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Preconditioned Steihaug-Toint

There are two possibilities how the Steihaug-Toint method can be
preconditioned:

1. To use the norms ‖di‖Ci
(instead of ‖di‖) in (18)–(24), where Ci are

preconditioners chosen. This possibility is not always efficient because
the norms ‖di‖Ci

, i ∈ N , vary considerably in the major iterations
and the preconditioners Ci, i ∈ N , can be ill-conditioned.

2. To use the Euclidean norms in (18)–(24) even if arbitrary
preconditioners Ci, i ∈ N , are used. In this case, the trust-region can
be leaved prematurely and the direction vector obtained can be farther
from the optimal locally constrained step than that obtained without
preconditioning. This shortcoming is usually compensated by the rapid
convergence of the preconditioned CG method.

Our computational experiments indicate that the second way is more
efficient in general.
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Gould-Lucidi-Roma-Toint 1997

Although the ST method is certainly the most commonly used in
trust-region methods, the resulting direction vector may be rather far from
the optimal solution even in the unpreconditioned case. This drawback
can be overcome by using the Lanczos process. Initially, the CG algorithm
is used as in the ST method. At the same time, the Lanczos tridiagonal
matrix is constructed from the CG coefficients. If a negative curvature is
encountered or the constraint is violated, we switch to the Lanczos
process. In this case, d = Zd̃, where d̃ is obtained by solving

minimize
1

2
d̃T T d̃ + ‖g‖eT

1 d̃ subject to ‖d̃‖ ≤ ∆.(26)

Here T = ZT BZ (with ZT Z = I) is the Lanczos tridiagonal matrix and
e1 is the first column of the unit matrix. Using a preconditioner C, the
preconditioned Lanczos method generates basis such that ZT CZ = I.
Thus we have to use the norms ‖di‖Ci

in (18)–(24), i.e., the first way of
preconditioning, which can be inefficient when Ci, i ∈ N , vary
considerably in the trust-region iterations or are ill-conditioned.
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Shifted Steihaug-Toint

This method applies the ST method to the shifted subproblem

min Q̃(d) = Qλ̃(d) = 1/2 dT (B + λ̃I)d + gT d s.t. ‖d‖ ≤ ∆.(27)

The number λ̃ ≥ 0 approximates λ in MS method. This method combines
good properties of the MS and ST methods and can be successfully
preconditioned by the second way. The solution is usually closer to the
optimal solution than the point obtained by the original ST method.

1. Carry out k ≪ n steps of the unpreconditioned Lanczos method to
obtain the tridiagonal matrix T = Tk = ZT

k BZk.

2. Solve the subproblem

minimize 1/2 d̃T T d̃ + ‖g‖eT
1 d̃ subject to ‖d̃‖ ≤ ∆,(28)

using the MS method to obtain the Lagrange multiplier λ̃.

3. Apply the (preconditioned) ST method to subproblem (27) to obtain the
direction vector d = d(λ̃).
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Hager 2001 (1)

There are several recently developed techniques for large scale TR
subproblems that are not based on conjugate gradients. This method
solves (25) with the additional constraint that d is contained in a
low-dimensional subspace. They are modified in successive iterations to
obtain quadratic convergence to the optimum. We seek vectors d ∈ S
where S contains the following vectors:

● The previous iterate. This causes that the value of the objective
function can only decrease in consecutive iterations.

● The vector Bd + g. It ensures descent if the current iterate does not
satisfy the first-order optimality conditions.

● An estimate for an eigenvector of B ass. with the smallest eigenvalue.
It will dislodge the iterates from a nonoptimal stationary point.

● The SQP iterate. The convergence is locally quadratic if S contains the
iterate generated by one step of the SQP algorithm applied to (25).
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Hager 2001 (2)

● At first, the Lanczos method is used to generate an orthonormal basis
for the k−dimensional Krylov subspace (usually k = 10).

● Problem (25) is reduced to the k−dimensional one to obtain an initial
iterate.

● An orthonormal basis for the subspace S is constructed.
● Original problem (25) is reduced to the four-dimensional one.
● A new iterate d is found via this small subproblem.
● The iteration is finished as soon as ‖(B + λI)d + g‖ with a Lagrange

multiplier λ is smaller than some sufficiently small tolerance.
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Hager 2001 (3)

The SQP method is equivalent to the Newton’s method applied to the
nonlinear system

(B + λI)d + g = 0,
1

2
dT d −

1

2
∆2 = 0.

The Newton iterate can be expressed in the following way:

dSQP = d + z, λSQP = λ + ν,

where z and ν are solutions of the linear system

(B + λI)z + d ν = −
(

(B + λI)d + g
)

,

dT z = 0,

which can be solved by preconditioned MINRES or CG methods. The
latter case with the incomplete Choleski-type decomposition of the matrix
B + λI has shown to be more efficient in practice.
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Rojas-Santos-Sorensen 1997, 2000

Another approach for finding the direction vector d is based on the idea of
Sorensen. Consider the bordered matrix

Bα =

(

α gT

g B

)

where α is a real number and observe that

α

2
+ Q(d) =

1

2
(1, dT )Bα

(

1

d

)

.

Thus there exists a value of α such that we can rewrite problem (25) as

minimize
1

2
dT

αBαdα subject to ‖dα‖
2 ≤ 1 + ∆2, eT

1 dα = 1,(29)

where dα = (1, dT )T and e1 is the first canonical unit vector in Rn+1. This
formulation suggests that we can find the desired solution in terms of an
eigenpair of Bα. The resulting algorithm is superlinearly convergent.
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8. Numerical comparison
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Numerical comparison

The methods (except for RSS) are implemented in the interactive system
for universal functional optimization UFO as subroutines for solving
trust-region subproblems. They were tested by using two collections of 22
sparse test problems with 1000 and 5000 variables – subroutines TEST 14
and TEST 15 described in [Lukšan,Vlček, V767, 1998], which can be
downloaded from the web page

www.cs.cas.cz/˜luksan/test.html .

The results are given in two tables, where NIT is the total number of
iterations, NFV is the total number of function evaluations, NFGis the total
number of gradient evaluations, NDCis the total number of Choleski-type
decompositions (complete for methods MS, DL, MDL and incomplete for
methods PH, PST, PSST), NMVis the total number of matrix-vector
multiplications, and Time is the total computational time in seconds.
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Table 1 – TEST 14

N Method NIT NFV NFG NDC NMV Time

1000 MS 1911 1952 8724 3331 1952 3.13
DL 2272 2409 10653 2195 2347 2.94
MDL 2132 2232 9998 1721 21670 3.17
ST 3475 4021 17242 0 63016 5.44
SST 3149 3430 15607 0 75044 5.97
GLRT 3283 3688 16250 0 64166 5.40
PH 1958 2002 8975 3930 57887 5.86
PST 2608 2806 12802 2609 5608 3.30
PSST 2007 2077 9239 2055 14440 2.97

5000 MS 8177 8273 34781 13861 8272 49.02
DL 9666 10146 42283 9398 9936 43.37
MDL 8913 9244 38846 7587 91784 48.05
ST 16933 19138 84434 0 376576 134.52
SST 14470 15875 70444 0 444142 146.34
GLRT 14917 16664 72972 0 377588 132.00
PH 8657 8869 37372 19652 277547 127.25
PST 11056 11786 53057 11057 23574 65.82
PSST 8320 8454 35629 8432 59100 45.57
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Table 2 – TEST 15

N Method NIT NFV NFG NDC NMV Time

1000 MS 1946 9094 9038 3669 2023 5.86
DL 2420 12291 12106 2274 2573 9.00
MDL 2204 10586 10420 1844 23139 7.86
ST 2738 13374 13030 0 53717 11.11
SST 2676 13024 12755 0 69501 11.39
GLRT 2645 12831 12547 0 61232 11.30
PH 1987 9491 9444 6861 84563 11.11
PST 3277 16484 16118 3278 31234 11.69
PSST 2269 10791 10613 2446 37528 8.41

5000 MS 7915 33607 33495 14099 8047 89.69
DL 9607 42498 41958 9299 9963 128.92
MDL 8660 37668 37308 7689 91054 111.89
ST 11827 54699 53400 0 307328 232.70
SST 11228 51497 50333 0 366599 231.94
GLRT 10897 49463 48508 0 300580 214.74
PH 8455 36434 36236 20538 281736 182.45
PST 9360 41524 41130 9361 179166 144.40
PSST 8634 37163 36881 8915 219801 140.44
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Comments

Note that NFGis much greater than NFV in the first table since the Hessian
matrices are computed by using gradient differences. At the same time,
the problems referred in the second table are the sums of squares having
the form

F =
1

2
fT (x)f(x)

and NFVdenotes the total number of the vector f(x) evaluations. Since
f(x) is used in the expression

g(x) = JT (x)f(x),

where J(x) is the Jacobian matrix of f(x), NFGis comparable with NFV in
this case.
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9. Summary
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Summary

The results in the previous tables require several comments. All problems
are sparse with a simple sparsity pattern. For this reason, the methods
MS, DL, MDL based on complete Choleski-type decompositions (CD) are
very efficient, much better than unpreconditioned methods ST, SST, GLRT
based on matrix-vector multiplications (MV). Note that the methods PH,
RSS are based on a different principle.

● Since TEST 14 contains reasonably conditioned problems, the
preconditioned MV methods are competitive with the CD methods.

● On the contrary, TEST 15 contains several very ill-conditioned problems
(one of them had to be removed) and thus the CD methods work better
than the MV methods.

In general, the CD methods are very efficient for ill-conditioned but
reasonably sparse problems but if the problems do not have sufficiently
sparse Hessian matrices, then the CD methods can be much worse than
the MV methods. The efficiency of the MV methods also strongly depends
on a suitable preconditioner.
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Thank you for your attention!
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