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1 Introduction

Basic optimization methods for minimization of function F : Rn → R can be realized in various
ways which differ in direction determination and step-size selection. Line-search and trust-
region realizations are most popular. Trust-region methods can be advantageously used when
the Hessian matrix of the objective function (or its approximation) is indefinite, ill-conditioned
or singular. This situation often arises in connection with the Newton method for general
objective function (indefiniteness) or with the Gauss-Newton method for nonlinear least-squares
(near-singularity).

2 Trust-region methods

Trust-region methods generate points xi ∈ Rn, i ∈ N , in such a way that x1 is arbitrary and

xi+1 = xi + αidi, i ∈ N , (1)

where di ∈ Rn are direction vectors and αi > 0 are step-sizes.

A crucial part is a direction determination. There are various commonly known methods for
computing direction vectors satisfying certain conditions which we now mention briefly. To
simplify the notation, we omit index i.

The most sophisticated method is based on a computation of the optimal locally constrained
step. In this case, vector d ∈ Rn is obtained by solving subproblem

min Q(d) =
1
2
dT Bd + gT d subject to ‖d‖ ≤ ∆, (2)

where function Q(d) locally approximates difference F (xi + d)−F (xi). Necessary and sufficient
conditions for this solution are

‖d‖ ≤ ∆, (B + λI)d = −g, B + λI º 0, λ ≥ 0, λ(∆− ‖d‖) = 0, (3)

where λ is a Lagrange multiplier. The Moré-Sorensen (MS) method [8] is based on solving
nonlinear equation 1/‖d(λ)‖ = 1/∆ with (B +λI)d(λ)+ g = 0 by the Newton method using the
sparse Choleski decomposition of B + λI. This method is very robust but requires 2-3 Choleski
decompositions per iteration.

Simpler methods are based on minimization of Q(d) on the two-dimensional subspace containing
Cauchy step dC = −(gT g/gT Bg)g and Newton step dN = −B−1g. The most popular is the
dog-leg (DL) method [2],[9], where d = dN if ‖dN‖ ≤ ∆ and d = (∆/‖dC‖)dC if ‖dC‖ ≥ ∆. In
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the remaining case, d is a convex combination of dC and dN such that ‖d‖ = ∆. This method
requires only one Choleski decomposition per iteration.

If B is not sufficiently sparse, then the sparse Choleski decomposition of B is expensive. In
this case, iterative methods based on conjugate gradients are more suitable. Steihaug [11]
and Toint [12] proposed a method based on the fact that Q(dk+1) < Q(dk) and ‖dk+1‖ >
‖dk‖ hold in the subsequent CG iterations if CG coefficients are positive. We either obtain
an unconstrained solution with a sufficient precision or stop on the trust-region boundary if
a negative curvature is indicated or the trust-region is left. When suitable preconditioning is
used, then this method (PST) is very efficient in practice. Note that ‖dk+1‖C > ‖dk‖C (where
‖dk‖2

C = dT
k Cdk) holds instead of ‖dk+1‖ > ‖dk‖ if preconditioner C (symmetric and positive

definite) is used. Thus the solution on the trust-region boundary obtained by the preconditioned
CG method can be farther from the optimal locally constrained step than the solution obtained
without preconditioning (see Figure 1). This insufficiency is usually compensated by the rapid
convergence of the preconditioned CG method.

||d|| < ∆
x

||d||C < ∆

Figure 1: Preconditioned CG method.

The solution on the trust-region boundary obtained by the Steihaug-Toint method can be rather
far from the optimal solution. This insufficiency can be overcame by using the Lanczos process
[3]. Initially, the conjugate gradient algorithm is used as in the Steihaug-Toint method. At the
same time, the Lanczos tridiagonal matrix is constructed from the CG coefficients. If a negative
curvature is indicated or the trust-region is left, we turn to the Lanczos process. In this case,
d = Zd̃, where d̃ is obtained by solving subproblem

min
1
2
d̃T T d̃ + ‖g‖eT

1 d̃ subject to ‖d̃‖ ≤ ∆. (4)

Here T = ZT BZ (with ZT Z = I) is the Lanczos tridiagonal matrix and e1 is the first column
of the unit matrix. This method cannot be successfully preconditioned, since preconditioning
changes trust-region constraint ‖d‖ ≤ ∆ to ‖d‖C ≤ ∆, where C changes in each major iteration
and can be ill-conditioned.

Therefore, we apply the Steihaug-Toint method to subproblem

min Q̃(d) = Qλ̃(d) =
1
2
dT (B + λ̃I)d + gT d subject to ‖d‖ ≤ ∆. (5)
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Number λ̃ ≥ 0, which approximates λ in (3), is found by solving a small-size subproblem
(4) with tridiagonal matrix T obtained by using a small number of the Lanczos steps. This
method [6],[7] like method [3], combines good properties of the Moré-Sorensen and the Steihaug-
Toint methods. Moreover, it can be successfully preconditioned. The point on the trust-region
boundary obtained by this method is usually closer to the optimal solution in comparison with
the point obtained by the original Steihaug-Toint method.

3 A shifted Steihaug-Toint method

A (preconditioned) shifted Steihaug-Toint method (PSST) differs from the standard one by using
shifted subproblem (5), where number λ̃ approximates λ in (3). Number λ̃ has to be chosen in
such a way that λ̃ = 0 if ‖d‖ < ∆, where d is a solution of (2), which is true if 0 ≤ λ̃ ≤ λ.

If we denote Kk = span{g,Bg, . . . , Bk−1g} the Krylov subspace of dimension k, then (under
some assumptions) we can prove the following assertions. Let

dk(λi) = arg min
d∈Kk

Qλi
(d), where Qλ(d) =

1
2

dT (B + λI)d + gT d.

Then
λi ≤ λj ⇔ ‖dk(λi)‖ ≥ ‖dk(λj)‖.

Moreover, if

dj = arg min
d∈Kj

Q(d) subject to ‖d‖ ≤ ∆, where Q(d) =
1
2

dT Bd + gT d

with corresponding Lagrange multipliers λj , j ∈ {1, . . . , n}, then for 1 ≤ k ≤ l ≤ n we have

λk ≤ λl.

Let’s return to subproblem (5). If we set λ̃ = λk for some k ≤ n, then 0 ≤ λ̃ = λk ≤ λn = λ.
As a consequence of this inequality, one has that λ = 0 implies λ̃ = 0, so that ‖d‖ < ∆ implies
λ̃ = 0. Thus the shifted Steihaug-Toint method reduces to the standard one in this case. At the
same time, if B is positive definite and λ̃ > 0, then one has ∆ ≤ ‖(B + λ̃I)−1g‖ < ‖B−1g‖. Thus
the unconstrained minimizer of (5) is closer to the trust-region boundary than the unconstrained
minimizer of (2) and we can expect that d(λ̃) is closer to the optimal locally constrained step
than d. Finally, if λ̃ > 0, then matrix B + λ̃I is better conditioned than B and we can expect
that the shifted Steihaug-Toint method will converge more rapidly than the original one.

The shifted Steihaug-Toint method consists of the three major steps. First, we carry out k ¿ n
steps of the unpreconditioned Lanczos method [3] to obtain tridiagonal matrix T ≡ Tk = ZT

k BZk,
where Zk ∈ Rn×k is the matrix whose columns form an orthonormal basis in Kk. Then we solve
subproblem (4) using the Moré-Sorensen method [8] to obtain Lagrange multiplier λ̃. Finally, we
apply the (preconditioned) Steihaug-Toint method [11],[12] to subproblem (5) to obtain direction
vector d = d(λ̃).
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4 Computational experiments

A numerical comparison of methods for computing direction vectors mentioned in Section 2
implies several conclusions [6],[7]. If problems do not have sparse Hessian matrices, then direct
methods MS and DL can be much worse than iterative methods PST and PSST. On the other
hand, direct methods can be more efficient for ill-conditioned but reasonably sparse problems.
Comparing PST and PSST, we can see that PSST is usually slightly worse than PST, measured
by the computational time, since it uses additional operations for determining the Lanczos
matrix T and computing parameter λ̃. Nevertheless, if the problems are difficult, then PSST is
much better than PST. Thus the total computational time can be lower for PSST.

MS - the method of Moré and Sorensen [8] for computing the optimal locally constrained step.

DL - the dog-leg strategy of Powell [9] or Dennis and Mei [2].

MDL - the multiple dog-leg strategy (k = 5) mentioned in [11].

ST - the basic (unpreconditioned) Steihaug [11] and Toint [12] method.

GLRT - the method of Gould, Lucidi, Roma and Toint [3] which combines CG method with
the Lanczos process to give a good approximation of the optimal locally constrained step.

PST - Preconditioned Steihaug-Toint method. The incomplete Choleski preconditioner is used.

PSST - Preconditioned shifted Steihaug-Toint method (k = 5). The incomplete Choleski pre-
conditioner is used.

These algorithms were used for solving trust-region subproblems arising in a realization of a
discrete Newton’s method. They were tested by using a set of 22 sparse least-squares test
problems with 1000 and 5000 variables (subroutine TEST14 [5], which can be found on the
page www.cs.cas.cz/~luksan/test.html). The results are given in Table 1, where NIT is the
total number of iterations, NFV is the total number of function evaluations, NFG is the total
number of gradient evaluations, NCG is the total number of CG iterations and Time is the total
computational time (in seconds).

N Method NIT NFV NFG NCG Time
1000 MS 1918 1955 8797 - 4.65

DL 2515 2716 11859 - 4.42
MDL 2292 2456 10673 12203 4.61
ST 3329 3784 16456 53573 8.20
GLRT 3107 3444 15306 55632 8.53
PST 2631 2823 13019 910 5.14
PSST 1999 2046 9201 1161 4.25

5000 MS 8391 8566 35824 - 122.44
DL 9657 10133 42425 - 115.77
MDL 8938 9276 39032 47236 122.84
ST 16894 19163 83933 358111 364:42
GLRT 14679 16383 71483 366695 401.45
PST 10600 11271 50365 3767 145.42
PSST 8347 8454 35939 4329 108.87

Table 1: Comparison of methods using TEST14.

For a better comparison of methods PST, PSST, DL and MS, we have performed additional
tests with problems from the widely used CUTE collection [1] which can be found in [6],[7].
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