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Iterative solution of linear systems

Iterative methods in exact arithmetic

generate approximate solutions to the solution of Az = b
Loy, L1yeey Ly — T
with residual vectors ro = b — Axg,...,7n =b— Axy, — 0

Iterative methods in finite precision arithmetic

compute approximations g, X1, ..., Zn and updated residual vectors
70,71, - .., Tn which are usually close to (but different from) the true
residuals b — AZ,,



Two main questions and two main effects

» How good is the computed approximate solution Z,,? How many (extra)
steps do we need to reach the same accuracy as one can get in the exact
method?

» How well the computed vector 7, approximates the (true) residual
b — Az,? Is there a limitation on the accuracy of the computed
approximate solution?

Two main effects of rounding errors:

DELAY OF CONVERGENCE AND LIMIT ON THE FINAL
(MAXIMUM ATTAINABLE) ACCURACY
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The concept of backward stability

A backward stable algorithm eventually computes the exact answer to a nearby
problem, i.e. the approximate solution Z,, satisfying

A+ AA,)T, = b+ Ab,
[AAR[|/I[A]l < O(u), [|Ab[|/[]b] < O(u)

<= The normwise backward error associated with the approximate solution

T, satisfies |[b—AZy, || <0
T30 0 AT = 11 u
ATz < O

A forward stable algorithm eventually computes the approximate solution Z,,
with the error that satisfies

120 — @[l < O(w) AT || All]|z]

Prager, Oettli, 1964; Rigal, Gaches, 1967
see also Higham, 2nd ed. 2002; Stewart, Sun, 1990; Meurant 1999



The level of maximum attainable accuracy

We are looking for the difference between the updated 7, and true residual
b— Az, (divided by [[b]| + | A]|.])

[b—AZn—Fn| o
[Bll+AlIZn ]l =*

_ . b—AZn||
nll — 0 = lim,, oo _b—AZL ] o
7] 0 n loll+llAllznll =

In the optimal case the bound is of O(u); then we have a backward stable
solution. The backward stability implies the forward stability.

Higham 2002, Higham, Knight 1993, Greenbaum, R, Strako%, 1997



Stationary iterative methods

> Az =b A=M-N

> At Mz =Nap +b
B: Tr+1 =k —&—/\/l*l(b—Awk)
> Inexact solution of systems with M: every computed solution j of

My = z is interpreted as an exact solution of a system with perturbed
data and relative perturbation bounded by parameter 7 such that

M+ AM)y =2z, [[AM|| < 7[M]|,  TR(M) <1



Accuracy of the computed approximate solution

A: Mxk+1 :N.’L'k+b

T — _ axi=o,..., o
W=l < i + v (14 20

]l ]l

16 = AZerall o _IMI+ IV (7 ( 4 maXizo,.., k{llwzl\}>
1ol + Al 22 ]~ 1Al ]|

B: Th41 :Ik+M71(b—AIk)

IEs0 =2 a4 (1 | maXizo.... ’“{””‘””})

[l [l

b — A1 ]| ( max;— o...k{l\wzll})
P Z AT < o) (14 o
ol + 1Al 2 k-4l ) llz|l

Higham, Knight 1993, Bai, R, 2012



Numerical experiments: small model example

A = tridiag(1,4,1) € R 5 = A ones(100, 1),
k(A) = [|A]| - |[A7H|| = 5.9990 - 0.4998 ~ 2.9983
A=M-N, M=D—-L, N=U
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normwise backward error
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relative error norms
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normwise backward errors
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Two-step splitting iteration methods

Mizpiio = Nz + b, A=M; - M
Moz = Nogpy1o+b, A=Mzy— N>

Numerous solution schemes: Hermitian/skew-Hermitian (HSS) splitting,
modified Hermitian/skew-Hermitian (MHSS) splitting, normal

Hermitian /skew-Hermitian (NSS) splitting, preconditioned variant of modified
Hermitian/skew-Hermitian (PMHSS) splitting and other splittings, ...

Bai, Golub, Ng 2003, 2007, 2008; Bai 2009
Bai, Benzi, Chen 2010, 2011; Bai, Benzi, Chen, Wang 2012

WExer =2l Mg A AT QM+ TG D + 7l M3 M|+ N2 D]

[l

(1 . max;=o,1/2,....k+1/2{|Zill}
[l



Two-step splitting iteration methods

Tppr/2 = 6 + M7 (b — Ax)
Tpp1 = Tpy1jo + Mo (b — Azgir/0)
<~
Tppr = xp + (M7 H M — MGTAMTY) (b — Axy)
=y + (T4 M5 "NDOM (b — Axy)
= xk 4+ M5y (T + NoMT ) (b — Axy,)

W2l < o)1tz (@ + st ) (14 Pl

el — [l



Numerical experiments: small model example

A = tridiag(2,4,1) € R b = A ones(100, 1),
k(A) = ||A]|l - |[A™Y| = 5.9990 - 0.4998 ~ 2.9983

A=H+S8, Hz%(A—i—AT), S:%(A—AT)

03 _1)

S = tridiag( L 3

H :tridiag(g,él,g), >
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Saddle point problems

We consider a saddle point problem with the symmetric 2 x 2 block form
A B\ [z\ _(f
BT o)\y)  \o)"

» A is a square n X n nonsingular (symmetric positive definite) matrix,

» B is a rectangular n x m matrix of (full column) rank m.

Applications: mixed finite element approximations, weighted least squares,
constrained optimization, computational fluid dynamics, electromagnetism etc.
[Benzi, Golub and Liesen, 2005], [EIman, Silvester, Wathen, 2005]. For the
updated list of applications leading to saddle point problems contact [Benzi].



Iterative solution of saddle point problems

Numerous solution schemes: inexact Uzawa algorithms, inexact null-space
methods, inner-outer iteration methods, two-stage iteration processes,
multilevel or multigrid methods, domain decomposition methods

Numerous preconditioning techniques and schemes: block diagonal
preconditioners, block triangular preconditioners, constraint preconditioning,
Hermitian/skew-Hermitian preconditioning and other splittings, combination
preconditioning

Numerous iterative solvers: conjugate gradient (CG) method, MINRES,
GMRES, flexible GMRES, GCR, BiCG, BiCGSTAB, ...



Schur complement reduction method

» Compute y as a solution of the Schur complement system
BTA'By=BTA7'f,
» compute x as a solution of
Ax = f — By.

» Segregated vs. coupled approach: xj, and yj approximate solutions to x
and y, respectively.

> Inexact solution of systems with A: every computed solution @ of
Awu = b is interpreted as an exact solution of a perturbed system

(A+AA)a =b+ Ab, [|AA] < 7||A[], [|Ab] < 7[bll, Tr(A) < 1.



Iterative solution of the Schur complement system

choose yo, solve Axg = f — Byo

compute ay, and piy)

Ye+1 = Yk + Otkpiy)

solve Ap\*) = —Bp¥)

back-substitution: outer

. iterati
Az =xp + Oékpgf), inner iteration
B: solve Azky1 = f — Byii1, iteration

C: solve Aup, = f — Az, — Byg+1,

Tkt1 = Tk + Uk-

A =1l BT



Accuracy in the saddle point system

I~ Az — Byl < L 151 + 1BV

| = BTay —r| < (O‘L"(())HA B + [BIY:).

Yie = max{||ly:|| | =0,1,...,k}.

Back-substitution scheme a1 | o

A:  Generic update
Tht1 = Tk + QP

B: Direct substitution
Thp1 = AT — Byrs1) additional

C:  Corrected dir. subst. system with A
Tpi1 =z + A7H(f — Az — Byry1)

(z) T u

—BT"A ' f+ B"A By, = —B"x;, — BTAT(f — Az — Byy)



Numerical experiments: a small model example

A = tridiag(1,4,1) € R B — rand(100, 20), f = rand(100,1),

k(A) = ||A||l - |[A7Y] = 5.9990 - 0.4998 ~ 2.9983,
®(B) = ||B|| - | BT|| = 7.1695 - 0.4603 ~ 3.3001.

[R, Simoncini, 2002]



Generic update: 1 = o3 + ozkpl(f’)
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Direct substitution: z3.1 = A~ (f — Bypi1)
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Corrected direct substitution: x4 = x5, + A~ (f — Az, — Bypy1)
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Null-space projection method

» compute € N(BT) as a solution of the projected system
(I -INA({I -z = —1I)f,
> compute y as a solution of the least squares problem
By~ f — Ax,

I = B(BTB)™'B7 is the orthogonal projector onto R(B).
» Schemes with the inexact solution of least squares with B. Every

computed approximate solution © of a least squares problem Bv = c is
interpreted as an exact solution of a perturbed least squares

(B+AB)tv = c+ Ac, |ABJ < 7||BJ|, ||Ac|| < 7|l¢||, Tr(B) < 1.



Null-space

projection method

choose zg, solve Byo ~ f — Axo

compute ay, and p\* € N(BT)

Tk4+1 = Tk + Qkpy,

(z)

(@)

W) g (@) (@)
Tk

solve Bp,, — arAp;,

back-substitution:

A: g1 =y +py,
B: solve Byy+1 ~ f — Axk41,
C: solve Bvy, =~ f — Axk41 — Byk,
Yk+1 = Yk + Vk.
(=)

Tag1 = Th akAp(z) Bp,(cy)

inner
iteration

outer
iteration



Accuracy in the saddle point system

I = Az = By = < SEDRD 111+ 4160,

- BTaul < 2O B

X = max{||z;]| |1 =0,1,...,k}.

Back-substitution scheme as
A: Generic update
Yk+1 = Yk -l-p(y) “
B: Direct substitution -
Yk4+1 = BJr(f — AZEk+1) additional least
C: Corrected dir. subst. U square with B
Yrt1 = yk + B (f — Azp1 — Byy)




Generic update: yx11 = Yk +P;(€y)
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Direct substitution: i1 = BT (f — Azjyq)
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Corrected direct substitution: ypr1 = yr + BT (f — Azpr1 — Byg)
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The maximum attainable accuracy of saddle point solvers

» The accuracy measured by the residuals of the saddle point problem
depends on the choice of the back-substitution scheme [Jirdnek, R, 2008].
The schemes with (generic or corrected substitution) updates deliver
approximate solutions which satisfy either the first or second block
equation to working accuracy.

» Care must be taken when solving nonsymmetric systems [Jirdnek, R,
2008], all bounds of the limiting accuracy depend on the maximum norm
of computed iterates, cf. [Greenbaum 1994,1997], [Sleijpen, et al. 1994].

iteration number k



Conclusions

"new_value = old_value + small_correction”

» Stationary iterative methods for Az = b and their maximum attainable
accuracy [Higham and Knight, 1993]: assuming splitting A = M — N and
inexact solution of systems with M, use Tnew = Tola + M 1 (b — Azoa)
rather than Zpew = Mﬁl(Nxom + b), [Higham, 2002; Bai, R].

» Two-step splitting iteration framework: A = M1 — N1 = M2 — N2
assuming inexact solution of systems with M; and Ma, reformulation of
M1/ = N1%old + b, MaZnew = N221/2 + b, Hermitian/skew-Hermitian
splitting (HSS) iteration [Bai, Golub and Ng 2003; Bai, R].

» Saddle point problems and inexact linear solvers: Schur complement and
null-space approach [Jirdnek, R 2008] Preconditioners for saddle point
problems: SIMPLE and SIMPLE(R) type algorithms [Vuik and Saghir,
2002] and constraint preconditioners [R, Simoncini, 2002].

> Fixed-precision iterative refinement for improving the computed solution
ZTold to a system Ax = b: solving update equations Azcorr = r that have
residual r = b — Ayeia as a right-hand side to obtain Znew = Zold + Zcorr,
see [Wilkinson, 1963], [Higham, 2002].



Thank you for your attention.

http://wuw.cs.cas.cz/~miro
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