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Abstract

THIS poster shows that arbitrary convergence behav-
ior is possible for the Arnoldi method and gives two

parametrizations of the class of matrices with initial Arnoldi
vectors that generates prescribed Ritz values. The second
parametrization enables to prove that any GMRES conver-
gence curve is possible with any prescribed Ritz values,
provided the stagnation case is treated appropriately.

1. Arbitrary convergence behavior of the Arnoldi
method

OUR results are inspired by the theory developed by Ar-
ioli, Greenbaum, Pták and Strakoš in [7], [8] and [3],

which resulted in a parametrization of all matrices and right
hand sides with prescribed spectrum of the matrix and pre-
scribed convergence of the GMRES method [16] (see [3,
Theorem 2.1,Corollary 2.4]). The GMRES method for lin-
ear systems and the Arnoldi method for eigenvalues [1] be-
ing closely related, a natural question is whether a result
on arbitrary convergence behavior of the Arnoldi method
can be proved. By arbitrary convergence behavior of the
Arnoldi method, we mean the ability to prescribe all Ritz
values from the very first until the very last iteration (we do
not address convergence of Ritz vectors).
In a recent paper, Parlett and Strang proved there is a
unique upper Hessenberg matrix with the entry one along
the subdiagonal such that all leading principal submatrices
have arbitrary prescribed eigenvalues (the Ritz values) [15,
Theorem 3]. We here give a characterization of this unique
matrix which shows how it is constructed from the pre-
scribed Ritz values. In the sequel we will denote by

R = { ρ
(1)
1 ,

(ρ
(2)
1 , ρ

(2)
2 ) ,

. . . (1)
(ρ

(n−1)
1 , . . . , ρ

(n−1)
n−1 ) ,

(λ1 , . . . . . . . . . . . . , λn) }

a set of tuples of complex numbers representing (n+ 1)n/2
arbitrary Ritz values for a Hessenberg matrix of size n. By
C(k) we denote the companion matrix of the polynomial with
roots ρ

(k)
1 , . . . , ρ

(k)
k (that is with roots λ1, . . . , λn for C(n)).

Theorem 1 Given the arbitrary Ritz values in (1) with com-
panion matrices C(k), define the unit upper triangular matrix
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Then the unique upper Hessenberg matrix H(R) with the
entry one along the subdiagonal such that the kth leading
principal submatrix has eigenvalues ρ

(k)
1 , . . . , ρ

(k)
k is

H(R) = U−1C(n)U.

The similarity transformation

diag (1, σ1, . . . ,Π
n−1
j=1 σj)H(R)

(
diag (1, σ1, . . . ,Π

n−1
j=1 σj)

)−1

for positive entries σ1, σ2, . . . , σn−1 does not change the
eigenvalues of the leading principal submatrices of H(R),
but gives a Hessenberg matrix with arbitrary positive subdi-
agonal [σ1, σ2, . . . , σn−1]. This immediately gives

Corollary 2 The Arnoldi method applied to the matrix A and
the initial unit Arnoldi vector b generate the prescribed Ritz
values R if and only if b = V e1 and A has the form

V diag (1, σ1, . . . ,Π
n−1
j=1 σj)H(R)diag (1, σ−1

1 , . . . ,Πn−1
j=1 σ

−1
j )V ∗

for a unitary matrix V and positive numbers σ1, σ2, . . . , σn−1.
Thus convergence behavior of Ritz values generated in
the Arnoldi method can be arbitrary for non-normal ma-
trices. The parametrization in Corollary 2 may be use-
ful for convergence analysis of versions of Arnoldi used
in practice, e.g. implicitly restarted Arnoldi with polyno-
mial shifts [4]; in particular it may help to better understand
(and avoid) cases where Arnoldi with exact shifts fails, see,
e.g. [5]. It also shows there is no interlacing property for
the Hessenberg matrices generated by the Arnoldi method.
Without an interlacing property, important properties of the
Lanczos method for Hermitian eigenproblems [9], like the
persistence theorem or stabilization of Ritz values (see,
e.g., [12, 13, 14] or [11]), need not hold anymore. More on
the absence of interlacing with general matrices (Hessen-
berg or not) can be found in [15]; for interlacing properties
of normal Hessenberg matrices see also [6], [2], [10].
We next give an alternative parametrization of arbi-
trary Arnoldi behavior which reveals the relation with the
parametrization of arbitrary GMRES behavior in [3, Theo-
rem 2.1,Corollary 2.4].
Theorem 3 Consider the (n + 1)n/2 arbitrary values in (1)
with the condition that (λ1, . . . , λn) contains no zero num-
ber. If A is a matrix of order n and b a unit n-dimensional
vector, then the following assertions are equivalent:
1. The Hessenberg matrix generated by the Arnoldi process

applied to A and initial Arnoldi vector b has eigenvalues
λ1, . . . , λn, and ρ

(j)
1 , . . . , ρ

(j)
j are the eigenvalues of its jth

leading principal submatrix for all j = 1, . . . , n− 1.
2. The matrix A is of the form

A = WY C(n)Y −1W ∗ (3)

and b = Wh, where W is a unitary matrix and Y is of

the form Y =

[
h

R
0

]
. R is the unique upper triangular

matrix satisfying
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for the partitioning
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,

of the inverse of the matrix U in (2) scaled with positive
numbers σ1, . . . , σn−1. The entries of h = [η1, . . . , ηn]

T are

[η1, . . . , ηn−1]
T = R−∗û, ηn =

√
1− ∥R−∗û∥2.

2. Arbitrary convergence behavior of the Arnoldi
and the GMRES methods for the same pair {A, b}

THE only freedom in the parametrization of Theorem 3
is in the unitary matrix W and the positive numbers

σ1, . . . , σn−1. Can we choose these positive numbers such
that we prescribe, in addition to Ritz values, also GMRES
residual norms ? Recall that the parametrization of arbi-
trary GMRES behavior has the same form (3), except that
the nonsingular upper triangular matrix R contained in Y is
arbitrary. The vector h contains the prescribed convergence
curve.

Theorem 4 Let the (n + 1)n/2 prescribed values in (1) be
such that (λ1, . . . , λn) contains no zero number and let n
positive numbers

1 = f (0) ≥ f (1) ≥ · · · ≥ f (n− 1) > 0,

be such that f (k − 1) = f (k) if and only if the k-tuple
(ρ

(k)
1 , . . . , ρ

(k)
k ) contains a zero number. Let the matrix U

in (2) be partitioned as

U =

[
1 c∗0
0 Un−1

]
.

If A is a square matrix of size n and b is a unit n-dimensional
vector, then the following assertions are equivalent:

1. The GMRES method applied to A and right hand side b
with zero initial guess yields residuals

∥r(j)∥ = f (j), j = 0, . . . , n− 1,

A has eigenvalues λ1, . . . , λn, and ρ
(j)
1 , . . . , ρ

(j)
j are the

eigenvalues of the jth leading principal submatrix of the
generated Hessenberg matrix for all j = 1, . . . , n− 1.

2. The matrix A is of the form

A = WYC(n)Y −1W ∗

and b = Wh, where W is any unitary matrix and Y is

given by Y =

[
h

R
0

]
, h = [η1, . . . , ηn]

T being the vector

ηj = (f (j − 1)2 − f (j)2)1/2, j < n, ηn = f (n− 1),

and R being the nonsingular upper triangular matrix

R = R−1
h DuU

−1
n−1,

where Rh is the upper triangular factor of the Cholesky
decomposition I − [η1, . . . , ηn−1]

T [η1, . . . , ηn−1] = RhR
∗
h,

and Du is a nonsingular diagonal matrix such that

D∗
uR

−T
h ĥ = −c0.

Therefore, in general, converging Ritz values need not im-
ply accelerated convergence speed in the GMRES method.
The only restriction Ritz values put on GMRES is that a zero
Ritz value implies stagnation in the corresponding iteration.
Note, however, that for particular matrices, e.g. matrices
close to normal, the bounds derived by Van der Vorst and
Vuik in [17] suggest that as soon as eigenvalues of such
matrices are sufficiently well approximated by Ritz values,
GMRES from then on converges at least as fast as for a
related system in which these eigenvalues are missing.

Future work includes investigation of what happens to The-
orems 3 and 4 when A is normal, the question whether
only a few Ritz values can be prescribed and investigation
whether our theory gives some insight on what is a good
Arnoldi starting vector b for non-normal matrices.
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