NUMERICAL BEHAVIOR OF GMRES

Miro Rozložník

Institute of Computer Science Czech Academy of Sciences CZ-182 07 Prague, Czech Republic email: miro@cs.cas.cz

joint work with A. Greenbaum, C. C. Paige and Z. Strakoš

Seminarium Pierścienie, macierze i algorytmy numeryczne, Politechnika Warszawska, Warszawa, October 26, 2010

OUTLINE

- 1. ROUNDING ERROR EFFECTS: DELAY OF CONVERGENCE AND MAXIMUM ATTAINABLE ACCURACY
- 2. BACKWARD ERROR AND BACKWARD STABILITY
- 3. LOSS OF ORTHOGONALITY AND NUMERICAL BEHAV-IOR OF GMRES: HOUSEHOLDER GMRES, MGS AND CGS GMRES
- 4. HOW TO MAKE SIMPLER GMRES AND GCR MORE STABLE: ADAPTIVE SIMPLER GMRES

ITERATIVE METHODS IN EXACT ARITHMETIC

generate approximate solutions to the solution of Ax = b

 $x_0, x_1, \ldots, x_n \to x$

with residual vectors $r_0 = b - Ax_0, \ldots, r_n = b - Ax_n \rightarrow 0$

METHODS IN FINITE PRECISION ARITHMETIC

compute approximations $x_0, \bar{x}_1, \ldots, \bar{x}_n$ and updated residual vectors $\overline{r}_0, \overline{r}_1, \ldots, \overline{r}_n$ which are usually close to (but different from) the true residuals $b - A\bar{x}_n$

TWO MAIN QUESTIONS

- How good is the computed approximate solution \bar{x}_n ? How many (extra) steps do we need to reach the same accuracy as one can get in the exact method?
- How well the computed vector \bar{r}_n approximates the (true) residual $b A\bar{x}_n$? Is there a limitation on the accuracy of the computed approximate solution?

TWO EFFECTS OF ROUNDING ERRORS: DELAY OF CONVERGENCE AND LIMITING (MAXIMUM ATTAINABLE) ACCURACY

effects of rounding errors on iterative methods

THE CONCEPT OF BACKWARD STABILITY

A backward stable algorithm eventually computes the exact answer to a nearby problem, i.e. the vector \bar{x}_n satisfying

$$(A + \Delta A_n)\bar{x}_n = b + \Delta b_n$$
$$|\Delta A_n||_{(F)}/||A||_{(F)} \le O(\varepsilon), \ ||\Delta b_n||/||b|| \le O(\varepsilon)$$

 \iff The normwise backward error associated with the approximate solution \bar{x}_n satisfies

$$\frac{\|b - A\bar{x}_n\|}{\|b\| + \|A\|_{(F)}\|\bar{x}_n\|} \le O(\varepsilon)$$

Prager, Oettli, 1964; Rigal, Gaches, 1967 see also Higham, 2nd ed. 2002; Stewart, Sun, 1990; Meurant 1999

THE LEVEL OF MAXIMUM ATTAINABLE ACCURACY

We are looking for the difference between the updated \bar{r}_n and true residual $b - A\bar{x}_n$ (divided by $||A|| ||\bar{x}_n|| + ||b||$ or $||A||_F ||\bar{x}_n|| + ||b||$)

$$\frac{\|b - A\bar{x}_n - \bar{r}_n\|}{\|A\| \|\bar{x}_n\| + \|b\|} \le ?$$

$$\|\bar{r}_n\| \longrightarrow 0 \implies \lim_{n \to \infty} \frac{\|b - A\bar{x}_n\|}{\|A\| \|\bar{x}_n\| + \|b\|} \le ?$$

In the optimal case the bound is of $O(\varepsilon)$; then we have a backward stable solution

Chris Paige, R, Strakoš, 2006

MOTIVATION: SYMMETRIC LANCZOS PROCESS AND CONJUGATE GRADIENT METHOD

THE CONCEPT OF CONVERGENCE DELAY

Greenbaum, 1989; Strakoš, Greenbaum, 1991

Paige, Strakoš, 1999

Meurant, Strakoš, Acta Numerica 2006

Strakoš, Liesen, ZAMM 2006

Delay in convergence of the conjugate gradient method (due to rounding errors) is given by the rank-deficiency of the computed Lanczos basis!

NONSYMMETRIC ARNOLDI PROCESS AND THE GMRES METHOD

Saad, Schultz 1986

THE CORRECTED PRINCIPLE OF CONVERGENCE DELAY:

Once the rank-deficiency occurs in the Arnoldi process the GM-RES method stagnates on its final accuracy level

THEORETICAL JUSTIFICATION?

BASIC QUESTION:

How important is the orthogonality of computed basis vectors in the GMRES method?

ANSWER:

For solving the system accurately we **do not** need fully orthogonal vectors - we need their **linear independence**! The crucial thing is a **complete loss** of their orthogonality!

$$Ax = b$$

 $A \in R^{N,N}$, A nonsingular, $b \in R^N$

THE GMRES METHOD:

 $x_0, r_0 = b - Ax_0,$ $K_n(A, r_0) = span \ \{r_0, Ar_0, \dots, A^{n-1}r_0\}$

$$x_n \in x_0 + K_n(A, r_0)$$

$$||b - Ax_n|| = \min_{u \in x_0 + K_n(A, r_0)} ||b - Au||$$

IMPLEMENTATION OF GMRES

$$\bar{x}_n = fl(x_0 + \bar{V}_n \bar{y}_n)$$

Arnoldi (orthogonalization) process:

The loss of orthogonality (loss of rank) in $\bar{V}_n = [\bar{v}_1, \bar{v}_2, \dots, \bar{v}_n]$ $\|I - \bar{V}_n^T \bar{V}_n\| \leq ?$, $\sigma_n(\bar{V}_n) \leq ?$

Upper-Hessenberg least squares problem:

The (in)accurate $\bar{y}_n = fl(\arg\min_y || ||r_0||e_1 - \bar{H}_{n+1,n}y||)$ $\kappa(\bar{H}_{n+1,n}) \leq ?$

THE NONSYMMETRIC ARNOLDI PROCESS

$$V_n = [v_1, v_2, \dots, v_n]$$

Arnoldi process is a (recursive) column-oriented QR decomposition of $[r_0, AV_n]!$

$$[r_0, AV_n] = V_{n+1}[||r_0||e_1, H_{n+1,n}]$$

 $H_{n+1,n}$ is an upper Hessenberg matrix

WELL-PRESERVED ORTHOGONALITY ⇒ BACKWARD STABILITY

HOUSEHOLDER GMRES:

$$\|I - \bar{V}_N^T \bar{V}_N\| \le O(\varepsilon)$$

Wilkinson 1967, Walker 1988, 1989

$$\frac{\|b - A\bar{x}_N\|}{\|A\| \|\bar{x}_N\| + \|b\|} \le O(\varepsilon)$$

 \bar{x}_N represents an exact solution to the nearby problem

$$(A + \Delta A)\bar{x}_N = b + \Delta b$$

Greenbaum, Drkošová, R, Strakoš, 1995

GRAM-SCHMIDT GMRES MODIFIED GRAM-SCHMIDT:

 $\|I - \bar{V}_n^T \bar{V}_n\| \le O(\varepsilon) \kappa([r_0, A\bar{V}_n])$

Björck, 1967 Björck, Paige, 19992

CLASSICAL GRAM-SCHMIDT:

 $\|I - \bar{V}_n^T \bar{V}_n\| \le O(\varepsilon) \kappa^2([r_0, A\bar{V}_n])$

van den Eshof, Giraud, Langou, R, 2005 Smoktunowicz, Barlow, Langou, 2006

The GRAM-SCHMIDT GMRES IMPLEMENTATION

The (modified) Gram-Schmidt version of GMRES (MGS-GMRES) is efficient, but looses orthogonality.

The rank-deficiency (total loss of orthogonality \equiv loss of linear independence of computed basis vectors) in the Arnoldi process with (modified) Gram-Schmidt can occur **only after** GMRES reaches its final accuracy level!

Greenbaum, R, Strakoš, 1997 Paige, R, Strakoš, 2006

GMRES WITH CGS ARNOLDI PROCESS

van den Eshof, Giraud, Langou, R, 2005 Smoktunowicz, Barlow, Langou, 2006

classical Gramm–Schmidt implementation

21

GMRES WITH MGS ARNOLDI PROCESS

The MGS-GMRES implementation is a **backward stable** iterative method.

STATEMENT:

For some iteration step $n \leq N$ the computed approximate solution \bar{x}_n satisfies

 $(A + \Delta A_n)\bar{x}_n = b + \Delta b_n$ $\|\Delta A_n\|/\|A\| \le O(\varepsilon), \|\Delta b_n\|/\|b\| \le O(\varepsilon)$

Paige, R, Strakoš, 2006

HOW TO MAKE SIMPLER GMRES AND GCR MORE STABLE

Miro Rozložník

Institute of Computer Science Czech Academy of Sciences CZ-182 07 Prague, Czech Republic email: miro@cs.cas.cz

joint work with **P. Jiránek and M.H. Gutknecht**

Seminarium Pierścienie, macierze i algorytmy numeryczne, Politechnika Warszawska, Warszawa, November 13, 2009

MINIMUM RESIDUAL METHODS

$$x_n \in x_0 + K_n(A, r_0), \quad r_n \equiv b - Ax_n$$
$$K_n(A, r_0) \equiv \operatorname{span}\{r_0, Ar_0, \dots, A^{n-1}r_0\}$$

$$||r_n|| = \min_{u \in x_0 + K_n(A, r_0)} ||b - Au||$$

$$\Leftrightarrow$$

$$r_n \perp AK_n(A, r_0)$$

THE SIMPLER GMRES APPROACH

 $[q_1, Z_{n-1}]$: a basis of $K_n(A, r_0)$, $q_1 \equiv r_0 / ||r_0||$, $||Z_{n-1}e_k|| = 1$

 V_n : an orthonormal basis of $AK_n(A, r_0)$, $V_n^T V_n = I$

$$A[q_1, Z_{n-1}] = V_n U_n, \quad V_n \equiv [v_1, \dots, v_n]$$

$$r_{n} = (I - V_{n}V_{n}^{T})r_{0} = r_{n-1} - \alpha_{n}v_{n}, \ \alpha_{n} = \langle r_{n-1}, v_{n} \rangle.$$
$$x_{n} = x_{0} + [q_{1}, Z_{n-1}]t_{n}, \quad U_{n}t_{n} = V_{n}^{T}r_{0} = (\alpha_{1}, \dots, \alpha_{n})^{T}.$$

Walker, Zhou, 1994

ROUNDING ERROR ANALYSIS

• The QR decomposition: $A[q_1, Z_{n-1}] = V_n U_n + F_n, ||F_n|| \le O(\varepsilon) ||A|| ||[q_1, Z_{n-1}]||$

Wilkinson, 1963, Björck, 1967

• Solution of the triangular system: $(U_n + \Delta U_n)\hat{t}_n = (\alpha_1, \dots, \alpha_n)^T, |\Delta U_n| \le O(\varepsilon)|U_n|$

Wilkinson, 1963

MAXIMUM ATTAINABLE ACCURACY: THE BACKWARD AND FORWARD ERROR

$$\frac{\|b - A\hat{x}_n - r_n\|}{\|A\| \|\hat{x}_n\|} \le O(\varepsilon)\kappa([q_1, Z_{n-1}])\left(1 + \frac{\|x_0\|}{\|\hat{x}_n\|}\right).$$

$$\frac{\|x_n - \hat{x}_n\|}{\|x\|} \le O(\varepsilon)\kappa(A)\kappa([q_1, Z_{n-1}])\frac{\|\hat{x}_n\| + \|x_0\|}{\|x\|}.$$

29

THE CHOICE $[q_1, Z_{n-1}] = [q_1, V_{n-1}]$

The **simpler** approach \equiv Simpler GMRES of Walker and Zhou, 1994.

 $[q_1, V_{n-1}]$ is of full column rank if $r_0 \not\in A\mathcal{K}_{n-1}(A, r_0)$.

Conditioning of $[q_1, V_{n-1}]$ related to the convergence of residuals, Walker and Zhou, 1994, Liesen, R, Strakoš 2002

$$\frac{\|r_0\|}{\|r_{n-1}\|} \le \kappa([q_1, V_{n-1}]) \le 2\frac{\|r_0\|}{\|r_{n-1}\|}.$$

THE CHOICE $[q_1, Z_{n-1}] = \tilde{R}_n \equiv [\frac{r_0}{\|r_0\|}, \dots, \frac{r_{n-1}}{\|r_{n-1}\|}]$

The **simpler** approach \equiv SGMRES (new implementation)

 \tilde{R}_n is of full-column rank if $r_0 \not\in AK_{n-1}(A, r_0)$ and $||r_0|| > \cdots > ||r_{n-1}||$.

Conditioning of \tilde{R}_n related to the stagnation of residuals: $\kappa(\tilde{R}_n) \leq n^{1/2} \gamma_n, \quad \gamma_n \equiv \sqrt{1 + \sum_{i=1}^{n-1} \frac{\|r_{i-1}\|^2 + \|r_i\|^2}{\|r_{i-1}\|^2 - \|r_i\|^2}}$

THANK YOU FOR YOUR ATTENTION!

THE UPDATE APPROACH: ORTHODIR, ORTHOMIN, GCR, GMRESR

 $V_{n}: \text{ an orthonormal basis of } AK_{n}(A, r_{0}), V_{n}^{T}V_{n} = I$ $A[q_{1}, Z_{n-1}] = V_{n}U_{n}, \quad V_{n} \equiv [v_{1}, \dots, v_{n}]$ $P_{n} \equiv A^{-1}V_{n}: A^{T}A \text{-orthonormal basis of } K_{n}(A, r_{0})$ $[q_{1}, Z_{n-1}] = P_{n}U_{n}, \quad P_{n} \equiv [p_{1}, \dots, p_{n}]$ \downarrow $x_{n} = x_{n-1} + \alpha_{n}p_{n},$ $r_{n} = r_{n-1} - \alpha_{n}v_{n},$ $\left.\right\} \quad \alpha_{n} = \langle r_{n-1}, v_{n} \rangle$

/insome,1976, Young, Jea, 1980, Elman et al. 1983, van der Vorst, Vuik, 1990