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Preconditioned iterative methods

Solving large, sparse SPD systems by iterative methods

Ax = b

Algebraic preconditioning as a transformation

M
−1
Ax =M−1

b

.In particular: Incomplete decompositions

As usual, should be cheap, fast to compute, implying fast converging
preconditioned iterative method

sparse enough

providing just sufficient approximation of the algebraic problem if this
makes computations faster

Our target is robustness
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Goal of this talk

Search of more robust algebraic preconditioners

1 Show the importance of structure of the matrix and its decomposition
in algebraic preconditioners.

2 Present the effect separately from the other possible improvements
(no compensations, no diagonal changes etc.).

3 Propose a new way to level-based strategies in incomplete
decompositions.

4 The techniques are a basis of the HSL code MI22 which is being
developed.
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Basic strategies

Brief notes on development of algebraic preconditioners: I.

Stencil based advent (Buleev, 1959, 1960; Varga, 1960; etc.):
stencils ↔ local interpolation ↔ elimination

Crucial moment: paper by Meijerink and van der Vorst (1977)
recognizing the potential of incomplete decompositions for
preconditioning.

Dropping entries with “smaller magnitudes” (absolutely/relatively)
(Zlatev et al. (1978), Munksgaard (1980), Axelsson (1972, 1983 et
al. etc.)

But: if only magnitudes of entries are used - structural information
may be lost
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Brief notes on development of algebraic preconditioners: II.

Plassman, Jones (1995): no structure, just the memory predictability,
see also Freund, Nachtigal, (1990). Similarly Lin, Moré with extended
memory. ILUT by Saad, (1994).

Allowing fill up to a maximum length ℓ of any fill path (Watts III,
(1981)).

Practically: A fill entry is permitted provided level(i, j) ≤ ℓ.

level(i, j) = min
1≤l≤min{i,j}

{level(i, l) + level(l, j) + 1}

(one of more definitions which slightly differ)

Structure of levels helps but it has its strong drawbacks as well.
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Level-based approach

Level-based approach: further comments

Often found that fill in L grows too quickly with ℓ.

While the error R = A− LLT inside the prespecified pattern is zero,
outside can be large.

First simple combination of level-based approaches with dropping:
D’Azevedo, Forsyth, Tang, (1992a).

The real breakthrough in level-based approaches: cheap predictions by
Hysom, Pothen, (2002)

Our MI22 preconditioner is a new way to use level-based information,
memory prediction and dropping at the same time.
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Computing the absolute values of the smallest and largest entries of
A: msmall and mbig.
Distribute nonzero entries uniformly by log |aij | into
ngroup0 = [log(mbig) − log(msmall)] + 1 groups. Shrink zero
groups to get ngroup of them.
Set level(i, j) for individual entries: For ℓ < ngroup:
level(i, j) = (ℓ− 1) ∗ (l/ngroup) + 1 where l (1 ≤ l ≤ ngroup0) is
the index of the group aij belongs to, and slightly differently
otherwise.
During the IC(ℓ) decomposition, entries of the factor L that
correspond to nonzero entries of A are assigned the level level(i, j).
Each potential fill entry lij is assigned a level

level(i, j) = min
1≤l≤min{i,j}

{level(i, l) + level(l, j) + 1}.

A fill entry is permitted provided level(i, j) ≤ k.
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First component of our approach: new setting of levels
Experience from the experiments

Notes on the presetting of levels

(+) Settings do not increase timings significantly.

(-)The improvements are often small. We intend to construct a
robust strategy which is used as a default value.

Open problem: determine more sophisticated rules to preassign levels.
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Second component of our approach: keeping structure

Level-based × value-based: example 1
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S1RMT3M1, cylindrical shell problem, n=5489
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Second component of our approach: keeping structure

Level-based × value-based: example 2
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Second component of our approach: keeping structure

97 problems; efficiency profiles (Dolan, Moré, 2001) for 3 levels
efficiency=size × iterations; fractions p(α) for which a solver is

within a factor of α of the best solver.
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No preassigning (3)   

Strategy I.: stress on sparsity; Strategy II.: denser and faster option
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Second component of our approach: keeping structure

Efficiency profiles for 6 levels.
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No preassigning (6)   
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Second component of our approach: keeping structure

MI22: scaling the preconditioner for simple (2D Poisson) problem
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MI22 with levels versus IC(τ)(also via MI22)
TUBE1, cylindrical shell, n=21498

struc drop=0.0 drop=10−7

level size its size its
5 1250952 † 1227570 †

6 1660827 429 1618808 423
7 1807337 405 1756733 408
8 2178312 272 2104496 281
9 2368289 260 2280081 267
10 3026431 184 2873613 185
11 3968731 426 3656826 335
12 4874629 † 4398086 †

13 5849563 † 5178688 †

14 6840871 664 5938543 647
15 7838623 262 6680235 215

IC(τ) size its
55 280626 †

50 1458024 †

45 2076970 †

40 2252687 †

1e-3 16139618 †

1e-4 9001342 †

5e-5 9649083 471
2e-5 9610841 87
1e-5 10050227 18
5e-6 10741254 6
1e-6 12451396 2

0 21802746 1
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TUBE1, cylindrical shell, n=21498

struc drop=0.0 drop=10−7

level size its size its
5 1250952 † 1227570 †

6 1660827 429 1618808 423
7 1807337 405 1756733 408
8 2178312 272 2104496 281
9 2368289 260 2280081 267
10 3026431 184 2873613 185
11 3968731 426 3656826 335
12 4874629 † 4398086 †

13 5849563 † 5178688 †

14 6840871 664 5938543 647
15 7838623 262 6680235 215

IC(τ) size its
55 280626 †

50 1458024 †

45 2076970 †

40 2252687 †

1e-3 16139618 †

1e-4 9001342 †

5e-5 9649083 471
2e-5 9610841 87
1e-5 10050227 18
5e-6 10741254 6
1e-6 12451396 2

0 21802746 1

But: Reorderings may minimize the effect.
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Performance profile

Statistic sij ≥ 0 (like CPU time) for the test set ℵ.

Define for j ∈ ℵ:

k(sij ,minjsij, α) =
1 if sij ≤ α minjsij
0 otherwise

displaystyle pi(α) =

∑
j
k(sij ,minjsij ,α)

|ℵ| for α ≥ 1.

25



Performance profile

Statistic sij ≥ 0 (like CPU time) for the test set ℵ.

Define for j ∈ ℵ:

k(sij ,minjsij, α) =
1 if sij ≤ α minjsij
0 otherwise

displaystyle pi(α) =

∑
j
k(sij ,minjsij ,α)

|ℵ| for α ≥ 1.

25



Performance profile

Statistic sij ≥ 0 (like CPU time) for the test set ℵ.

Define for j ∈ ℵ:

k(sij ,minjsij, α) =
1 if sij ≤ α minjsij
0 otherwise

displaystyle pi(α) =

∑
j
k(sij ,minjsij ,α)

|ℵ| for α ≥ 1.

25



Performance profile

Statistic sij ≥ 0 (like CPU time) for the test set ℵ.

Define for j ∈ ℵ:

k(sij ,minjsij, α) =
1 if sij ≤ α minjsij
0 otherwise

displaystyle pi(α) =

∑
j
k(sij ,minjsij ,α)

|ℵ| for α ≥ 1.

25


	Algebraic preconditioners
	Introduction: Preconditioned iterative methods
	Goal of this talk
	Algebraic preconditioners
	The importance of having structure
	Conclusions


