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Saddle point problems

We consider a saddle point problem with the symmetric 2 x 2 block form
A B\ [(z\ _(f
BT o)\y)  \o/)"

> A is a square n X n nonsingular (symmetric positive definite) matrix,

> B is a rectangular n X m matrix of (full column) rank m.

Applications: mixed finite element approximations, weighted least squares,
constrained optimization, computational fluid dynamics, electromagnetism etc.
[Benzi, Golub and Liesen, 2005]. For the updated list of applications leading to
saddle point problems contact [Benzi, 2009].
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Iterative solution of saddle point problems

1. segregated approach: outer iteration for solving the reduced Schur
complement or null-space projected system;

2. coupled approach with block preconditioning: iteration scheme for
solving the preconditioned system;

3. rounding errors in floating point arithmetic: numerical stability of the
solver

Numerous preconditioning techniques and schemes: block diagonal
preconditioners, block triangular preconditioners, constraint preconditioning,
Hermitian /skew-Hermitian preconditioning and other splittings, combination
preconditioning

References: [Bramble and Pasciak, 1988], [Silvester and Wathen, Wathen and
Silvester 1993, 1994], [Elman, Silvester and Wathen, 2002, 2005], [Kay, Loghin
and Wathen, 2002], [Perugia, Simoncini, Arioli, 1999], [Keller, Gould and
Wathen 2000], [Gould, Hribar and Nocedal, 2001], [Stoll, Wathen, 2008], ...
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Preconditioning of saddle point problems

A symmetric indefinite, P positive definite

— A B ~ _ T
A= (4 B)wporrn

(RTAR) R (g) =R (g)

R-TAR™! is symmetric indefinite!



Symmetric indefinite or nonsymmetric preconditioner

P symmetric indefinite or nonsymmetric

()9
o) ()

P-1A and AP~! are nonsymmetric!



Schur complement approach with indefinite preconditioner

(o 0) () =) ™= (ar )

L I 0
AP = ((1— S)BT A~ s)

S = BTA 1B, AP~! nonsymmetric but diagonalizable and it
has a 'nice’ spectrum!

o(APY) c {1}uo(BTA'BT)

[Durazzi, Ruggiero 2003], [Fortin, El-Maliki, 20097]



Krylov method with the preconditioner: basic properties

(o) o= (a) o= (32500)
Yo PRV s0 )’ k+1 Y — Ykt
_ (A B Th+1
Tk+1 = BT 0 Ykt1
T 0 =T 0
0— kE+1 —
S0 " Sk+1
=

Az + By = f

O



Preconditioned CG method: saddle point problem and indefinite
preconditioner

T -1 _ C_
T Py =0,7=0,...,k
yk+1 is an iterate from CG applied to the Schur complement system
BTA'By = BTA!f1
satisfying

] ly — yk+1HBTAle =
My e+ Ky 1 (BTA—1B,BT A=1f) ly — UHBTA—lB



Preconditioned CG algorithm

s P
P _pr (O p\ _ (—AT'BpY,
W | =P 0\ | = )
DPry1 Sk+1 Dy, Pri1

(k%K)
(Apg,pi)

A =

—1
Zkt1 = P T4

B = (Pk41:2641)
(rk>2K)

Pk+1 = Zk+1 + BrDr



Numerical experiments: a small model example

A = tridiag(1,4,1) € R*®** B = rand(25,5), f = rand(25,1),
K(A) = ||A|| - |[A7Y| = 5.9854 - 0.4963 ~ 2.9710,
k(B) = |B|| - | BT|| = 5.9990 - 0.4998 ~ 2.9983.



Generic update: a1 = x), + akpl(f) with pgf) = —A-1ppYW
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Saddle point problem and indefinite constraint preconditioner

(o 0) ()= () 7= (o 0)

. (AI-T)+1 (A—I)B(B"B)™
AP = ( 0 I )

I = B(BYB)™*B” - orth. projector onto span(B)

[Luksan, VIgek, 1998], [Gould, Keller, Wathen 2000]
[Perugia, Simoncini, Arioli, 1999], [R, Simoncini, 2002]



Indefinite constraint preconditioner: spectral properties

AP~! nonsymmetric and non-diagonalizable!
but it has a 'nice’ spectrum:

oc(APY) c {1}Uuo(A(I —1I) +1II)
C {1} Ua((I - A - II)) — {0}

and only 2 by 2 Jordan blocks!

[LukZan, Vigek 1998], [Gould, Wathen, Keller, 1999], [Perugia, Simoncini 1999]



Krylov method with the constraint preconditioner: basic properties

()= (8) = (5500)
_(fY_( A B Th1

Tk+1 = 0 BT o Yrt

ro = (300) o = (3/<8L1>

= BT (x —x141) =0
= 341 € Null(BT)!



Preconditioned CG algorithm

o = ((0) P () (zﬁi) , (iﬁ’;ﬁ)) = (e 20)/ (Api, pe)
)
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Preconditioned CG method: error norm

rE P lr;=0,7=0,...k
ZTk+1 is an iterate from CG applied to
(I — A — )z = (I — D) /!
satisfying

H.%' - karlHA - minue:r:o-l-span{(I—H)Sj} HHJ - UHA

[Luksan, VIEek 1998], [Gould, Wathen, Keller, 1999]



Preconditioned CG method: residual norm

[ k41 — 2f} =0
but in general

Yk+1 7Y

which is reflected in

S
Il = H( o )H # 0!

but under appropriate scaling yes!



Preconditioned CG method: residual norm

Tk+1 — T
T —zp41 = Pp1 ([ — DA — 1)) (z — 20)

Skt1 = Pr+1(A( —1II) + IT)so
o((I —IA(I —10)) ~ o(A(I — II) 4 I1)?

(1} € o((I — aA(I — 1)) — {0}

= s = H( Skt )H Lo



How to avoid misconvergence?

> Scaling by a constant a > 0 such that

{1} € conv(o((I — IN)aA(I —1II)) — {0})

o 06)-0) = G 9)- ()
ve @ =Tl #0, O‘:((I—H)u,lA(J—H)u)!

> Scaling by a diagonal A — (diag(A))~'/?A(diag(A))~*/? often gives
what we want!

» Different direction vector p(”)

minimized!

so that ||7k+1]] = ||sk+1]] is locally

Yk+1 = Yk + (BTB)leTsk

[Braess, Deuflhard,Lipikov 1999], [Hribar, Gould, Nocedal, 1999], [Jiranek, R, 2008]



Numerical experiments: a small model example

A = tridiag(1, 4, 1) € R*?*, B =rand(25,5) € R*®*®
f =rand(25,1) € R

o(A) C [2.0146,5.9854]

a=vr (5 D D)

1/100 [0.0207,0.0586] U {1}
1/10 [0.2067, 0.5856] U {1}
1/4 [0.5170,1.4641]

1 {1} U[2.0678, 5.8563]

4 {1} U [8.2712,23.4252)]
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Error norm of the computed approximate solution

Finite precision arithmetic:

_ _(1)
(Jgkﬂ )7 Tk+1=< f?f)l >_’O
Yr+1 Sk+1
lo—zs1llh = (MA@ — 241, 11w — 5201)+((] — D A@ — 311, (T — T (@ — 3441))

lz = Zesrlla < M@ — Zesr)l] + 72 ll(1 = DAL = ) (z — Tt ||

Exact arithmetic:
Iz — 2s)l| = 0

(I =AW - I)(z — zx41)]| = 0



Error norm of the computed approximate solution

departure from the null-space of BT + projection of the residual onto it
— T — _ —
lz = @rsalla < 3BT (@ = Zaar)| + 72l (I = (S = AZiss — B
can be monitored by easily computable quantities:

- (2
BT (& — Zpy1) ~ 32421

(I = T)(f — AZxp1 — Bier) ~ (I — 5,



Residuals: maximum attainable accuracy

_ _ —(1 _ —(2
I(f = AZy1 — Biisr) — 5oyl BT (x — Frga) — 5701 <

i (D)= (A4 BY () - ()
=1o BT 0 Thot1 57
< ciek(A) maxj—o,...k+1 [|75]]

[Greenbaum 1994,1997], [Sleijpen, et al. 1994]

good scaling: ||7;|| — 0 nearly monotonically
7ol ~ maxj=o,....k+1 [I75]l



convergence characteristics
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convergence characteristics
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Conclusions: coupled approach with indefinite preconditioner

» Short-term recurrence methods are applicable for saddle point problems
with indefinite preconditioning at a cost comparable to that of symmetric
solvers. There is a tight connection between the simplified Bi-CG
algorithm and the classical CG.

» The convergence of CG applied to saddle point problem with indefinite
preconditioner for all right-hand side vectors is not guaranteed. For a
particular set of right-hand sides the convergence can be achieved by the
appropriate scaling of the saddle point problem.

» Since the maximum attainable accuracy depends heavily on the size of
computed residuals, a good scaling of the problems leads to approximate
solutions satisfying both two block equations to the working accuracy.



Thank you for your attention.

http://www.cs.cas.cz/~miro
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