
The importance of Structure in Algebraic Preconditioners

Jennifer Scott

Rutherford Appleton Laboratory

Miroslav Tůma

Institute of Computer Science

Academy of Sciences of the Czech Republic

August 14, 2009,

Hong Kong Baptist University

1

Outline

1 Introduction: Preconditioned iterative methods

2 Goal of this talk

3 Algebraic preconditioners - direct incomplete decompositions

4 The importance of having structure

5 Conclusions

2

Outline

1 Introduction: Preconditioned iterative methods

2 Goal of this talk

3 Algebraic preconditioners - direct incomplete decompositions

4 The importance of having structure

5 Conclusions

3

Preconditioned iterative methods

Solving large, sparse SPD systems by iterative methods

Ax = b

4

Preconditioned iterative methods

Solving large, sparse SPD systems by iterative methods

Ax = b

Algebraic preconditioning as a transformation

M
−1
Ax =M−1

b

.

4

Preconditioned iterative methods

Solving large, sparse SPD systems by iterative methods

Ax = b

Algebraic preconditioning as a transformation

M
−1
Ax =M−1

b

.In particular: Incomplete decompositions

4

Preconditioned iterative methods

Solving large, sparse SPD systems by iterative methods

Ax = b

Algebraic preconditioning as a transformation

M
−1
Ax =M−1

b

.In particular: Incomplete decompositions

As usual, should be cheap, fast to compute, implying fast converging
preconditioned iterative method

4

Preconditioned iterative methods

Solving large, sparse SPD systems by iterative methods

Ax = b

Algebraic preconditioning as a transformation

M
−1
Ax =M−1

b

.In particular: Incomplete decompositions

As usual, should be cheap, fast to compute, implying fast converging
preconditioned iterative method

sparse enough

4

Preconditioned iterative methods

Solving large, sparse SPD systems by iterative methods

Ax = b

Algebraic preconditioning as a transformation

M
−1
Ax =M−1

b

.In particular: Incomplete decompositions

As usual, should be cheap, fast to compute, implying fast converging
preconditioned iterative method

sparse enough

providing just sufficient approximation of the algebraic problem if this
makes computations faster

4

Preconditioned iterative methods

Solving large, sparse SPD systems by iterative methods

Ax = b

Algebraic preconditioning as a transformation

M
−1
Ax =M−1

b

.In particular: Incomplete decompositions

As usual, should be cheap, fast to compute, implying fast converging
preconditioned iterative method

sparse enough

providing just sufficient approximation of the algebraic problem if this
makes computations faster

Our target is robustness, not a fragile power

4

Outline

1 Introduction: Preconditioned iterative methods

2 Goal of this talk

3 Algebraic preconditioners - direct incomplete decompositions

4 The importance of having structure

5 Conclusions

5

Goal of this talk

Search of more robust algebraic preconditioners

6

Goal of this talk

Search of more robust algebraic preconditioners

1 Show the importance of structure of the matrix and its decomposition
in algebraic preconditioners.

6

Goal of this talk

Search of more robust algebraic preconditioners

1 Show the importance of structure of the matrix and its decomposition
in algebraic preconditioners.

2 Present the effect separately from the other possible improvements
(no compensations).

6

Goal of this talk

Search of more robust algebraic preconditioners

1 Show the importance of structure of the matrix and its decomposition
in algebraic preconditioners.

2 Present the effect separately from the other possible improvements
(no compensations).

3 Propose the new way to of level-based strategy in the incomplete
decomposition.

6

Goal of this talk

Search of more robust algebraic preconditioners

1 Show the importance of structure of the matrix and its decomposition
in algebraic preconditioners.

2 Present the effect separately from the other possible improvements
(no compensations).

3 Propose the new way to of level-based strategy in the incomplete
decomposition.

4 The techniques are basis of the new HSL code MI22.

6

Goal of this talk

Search of more robust algebraic preconditioners

1 Show the importance of structure of the matrix and its decomposition
in algebraic preconditioners.

2 Present the effect separately from the other possible improvements
(no compensations).

3 Propose the new way to of level-based strategy in the incomplete
decomposition.

4 The techniques are basis of the new HSL code MI22.

Structure of this talk

Some notes on the history of the structure-based preconditioners

6

Goal of this talk

Search of more robust algebraic preconditioners

1 Show the importance of structure of the matrix and its decomposition
in algebraic preconditioners.

2 Present the effect separately from the other possible improvements
(no compensations).

3 Propose the new way to of level-based strategy in the incomplete
decomposition.

4 The techniques are basis of the new HSL code MI22.

Structure of this talk

Some notes on the history of the structure-based preconditioners

Basic ways of improvements

6

Goal of this talk

Search of more robust algebraic preconditioners

1 Show the importance of structure of the matrix and its decomposition
in algebraic preconditioners.

2 Present the effect separately from the other possible improvements
(no compensations).

3 Propose the new way to of level-based strategy in the incomplete
decomposition.

4 The techniques are basis of the new HSL code MI22.

Structure of this talk

Some notes on the history of the structure-based preconditioners

Basic ways of improvements

Experimental results showing some structure-based effects

6

Outline

1 Introduction: Preconditioned iterative methods

2 Goal of this talk

3 Algebraic preconditioners - direct incomplete decompositions

4 The importance of having structure

5 Conclusions

7

Incomplete decompositions
First encounter

Stencil-based advent

First algebraic preconditioners M combined with A into M−1A and
derived directly via interpolations from the grid stencil (Buleev, 1959,
1960).

8

Incomplete decompositions
First encounter

Stencil-based advent

First algebraic preconditioners M combined with A into M−1A and
derived directly via interpolations from the grid stencil (Buleev, 1959,
1960).

Later co-invented and interpreted as incomplete decompositions
(Varga, 1960)

8

Incomplete decompositions
First encounter

Stencil-based advent

First algebraic preconditioners M combined with A into M−1A and
derived directly via interpolations from the grid stencil (Buleev, 1959,
1960).

Later co-invented and interpreted as incomplete decompositions
(Varga, 1960)

Additional corrections started to be heavily parametrized, added
purely algebraic relaxations (Baker, Oliphant (1960), Il’in (1970),
Woznicki (1989)); changing compensations dynamically (Sabinin,
1981, 1985).

8

Incomplete decompositions
First encounter

Stencil-based advent

First algebraic preconditioners M combined with A into M−1A and
derived directly via interpolations from the grid stencil (Buleev, 1959,
1960).

Later co-invented and interpreted as incomplete decompositions
(Varga, 1960)

Additional corrections started to be heavily parametrized, added
purely algebraic relaxations (Baker, Oliphant (1960), Il’in (1970),
Woznicki (1989)); changing compensations dynamically (Sabinin,
1981, 1985).

stencils ↔ local interpolation ↔ elimination

8

Incomplete decompositions
First encounter

Stencil-based advent

First algebraic preconditioners M combined with A into M−1A and
derived directly via interpolations from the grid stencil (Buleev, 1959,
1960).

Later co-invented and interpreted as incomplete decompositions
(Varga, 1960)

Additional corrections started to be heavily parametrized, added
purely algebraic relaxations (Baker, Oliphant (1960), Il’in (1970),
Woznicki (1989)); changing compensations dynamically (Sabinin,
1981, 1985).

stencils ↔ local interpolation ↔ elimination

starting with first order factorizations N =M −A = O(h)

8

Incomplete decompositions
First encounter (continued)

Stencil-based advent (continued)

9

Incomplete decompositions
First encounter (continued)

Stencil-based advent (continued)

Later, second order factorizations (SIP - Stone, 1968). Difficulties to
symmetrize them (Saylor, 1974).

9

Incomplete decompositions
First encounter (continued)

Stencil-based advent (continued)

Later, second order factorizations (SIP - Stone, 1968). Difficulties to
symmetrize them (Saylor, 1974).

Nice results related to conditioning of M−1A, subsequent diagonal
modifications and their “algebraizations” (Dupont, Kendall, Rachford
(1968), Gustafsson (1978), Axelsson, Lindsgog (1986), van der Vorst
(1989) and a lot later work!.

9

Incomplete decompositions
First encounter (continued)

Stencil-based advent (continued)

Later, second order factorizations (SIP - Stone, 1968). Difficulties to
symmetrize them (Saylor, 1974).

Nice results related to conditioning of M−1A, subsequent diagonal
modifications and their “algebraizations” (Dupont, Kendall, Rachford
(1968), Gustafsson (1978), Axelsson, Lindsgog (1986), van der Vorst
(1989) and a lot later work!.

More general patterns

9

Incomplete decompositions
First encounter (continued)

Stencil-based advent (continued)

Later, second order factorizations (SIP - Stone, 1968). Difficulties to
symmetrize them (Saylor, 1974).

Nice results related to conditioning of M−1A, subsequent diagonal
modifications and their “algebraizations” (Dupont, Kendall, Rachford
(1968), Gustafsson (1978), Axelsson, Lindsgog (1986), van der Vorst
(1989) and a lot later work!.

More general patterns

Crucial moment: paper by Meijerink and van der Vorst (1977)
recognizing the potential of incomplete decompositions for
preconditioning.

9

Incomplete decompositions
First encounter (continued)

Stencil-based advent (continued)

Later, second order factorizations (SIP - Stone, 1968). Difficulties to
symmetrize them (Saylor, 1974).

Nice results related to conditioning of M−1A, subsequent diagonal
modifications and their “algebraizations” (Dupont, Kendall, Rachford
(1968), Gustafsson (1978), Axelsson, Lindsgog (1986), van der Vorst
(1989) and a lot later work!.

More general patterns

Crucial moment: paper by Meijerink and van der Vorst (1977)
recognizing the potential of incomplete decompositions for
preconditioning.

Incomplete decompositions classified by adding (ℓ) after the name.
Starting to denote them by number of additional diagonals in simple
problems → IC(ℓ).

9

Incomplete decompositions
General patterns

Matrix-based approach

10

Incomplete decompositions
General patterns

Matrix-based approach

Matrix → graph

10

Incomplete decompositions
General patterns

Matrix-based approach

Matrix → graph

A =

1 1 1
1 1 1

1 1 1
1 1

1 1
1 1 1

3

6 5

2

1

4

10

Incomplete decompositions
General patterns

Matrix-based approach

Matrix → graph

A =

1 1 1
1 1 1

1 1 1
1 1

1 1
1 1 1

3

6 5

2

1

4

Fill-path is a path in G joining nodes i and i via nodes with labels
lower than both i and j.

10

Incomplete decompositions
General patterns

Matrix-based approach

Matrix → graph

A =

1 1 1
1 1 1

1 1 1
1 1

1 1
1 1 1

3

6 5

2

1

4

Fill-path is a path in G joining nodes i and i via nodes with labels
lower than both i and j.

Entries of the Cholesky factor lij, i > j are nonzero if and only if
there is a fill path joining i and j in G.

10

Incomplete decompositions
General patterns

Matrix-based approach

Matrix → graph

A =

1 1 1
1 1 1

1 1 1
1 1

1 1
1 1 1

3

6 5

2

4

1

Fill-path is a path in G joining nodes i and i via nodes with labels
lower than both i and j.

Entries of the Cholesky factor lij, i > j are nonzero if and only if
there is a fill path joining i and j in G.

10

Incomplete decompositions
General patterns

Matrix-based approach

Matrix → graph

A =

1 1 1
1 1 1 1

1 1 1
1 1 1

1 1
1 1 1

3

6 5

2

4

1

Fill-path is a path in G joining nodes i and i via nodes with labels
lower than both i and j.

Entries of the Cholesky factor lij, i > j are nonzero if and only if
there is a fill path joining i and j in G.

10

Incomplete decompositions
General patterns

Matrix-based approach

Allowing fill up to a maximum length ℓ of any fill path (Watts III,
(1981)).

11

Incomplete decompositions
General patterns

Matrix-based approach

Allowing fill up to a maximum length ℓ of any fill path (Watts III,
(1981)).

Practically: A fill entry is permitted provided level(i, j) ≤ ℓ.

level(i, j) = min
1≤l≤min{i,j}

{level(i, l) + level(l, j) + 1}

(one of more slightly different definitions)

11

Incomplete decompositions
General patterns: an example

Example: Structure-based preconditioners

12

Incomplete decompositions
General patterns: an example

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 217
0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 289

IC(0) IC(1)

12

Incomplete decompositions
General patterns: an example

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 217
0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 349

IC(0) IC(2)

12

Incomplete decompositions
General patterns: an example

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 217
0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 457

IC(0) IC(3)

12

Incomplete decompositions
General patterns: an example

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 217
0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 541

IC(0) IC(4)

12

Incomplete decompositions
General patterns: an example

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 217
0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 601

IC(0) IC(5)

12

Incomplete decompositions
General patterns: an example

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 217
0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 637

IC(0) IC(6)

12

Incomplete decompositions
General patterns: an example

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 217
0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 649

IC(0) IC(7)

12

Incomplete decompositions
General patterns

Matrix-based approach

Often found that fill in L grows too quickly with ℓ.

13

Incomplete decompositions
General patterns

Matrix-based approach

Often found that fill in L grows too quickly with ℓ.

While the error R = A− LLT inside the pattern is zero, outside can
be large.

13

Incomplete decompositions
General patterns

Matrix-based approach

Often found that fill in L grows too quickly with ℓ.

While the error R = A− LLT inside the pattern is zero, outside can
be large.

But: Decay of entries away from diagonal may help a lot.

13

Incomplete decompositions
Natural competitor of level-based methods: considering values

14

Incomplete decompositions
Natural competitor of level-based methods: considering values

Dropping entries with “smaller magnitudes” (absolutely/relatively)
(Zlatev et al. (1978), Munksgaard (1980), Axelsson (1972, 1983 et
al. etc.)

14

Incomplete decompositions
Natural competitor of level-based methods: considering values

Dropping entries with “smaller magnitudes” (absolutely/relatively)
(Zlatev et al. (1978), Munksgaard (1980), Axelsson (1972, 1983 et
al. etc.)

But: if only magnitudes of entries are used - structural information
may be lost

14

Incomplete decompositions
Natural competitor of level-based methods: considering values

Dropping entries with “smaller magnitudes” (absolutely/relatively)
(Zlatev et al. (1978), Munksgaard (1980), Axelsson (1972, 1983 et
al. etc.)

But: if only magnitudes of entries are used - structural information
may be lost

More complicated schemes may strongly influence implementations
(e.g., if both row and column access for intermediate quantities is
needed)

14

Incomplete decompositions
Natural competitor of level-based methods: considering values

Dropping entries with “smaller magnitudes” (absolutely/relatively)
(Zlatev et al. (1978), Munksgaard (1980), Axelsson (1972, 1983 et
al. etc.)

But: if only magnitudes of entries are used - structural information
may be lost

More complicated schemes may strongly influence implementations
(e.g., if both row and column access for intermediate quantities is
needed)

Plassman, Jones (1995): no structure, just the memory predictability,
see also Freund, Nachtigal, (1990). Similarly Lin, Moré with extended
memory. ILUT by Saad, (1994).

14

Incomplete decompositions
Natural competitor of level-based methods: considering values

Dropping entries with “smaller magnitudes” (absolutely/relatively)
(Zlatev et al. (1978), Munksgaard (1980), Axelsson (1972, 1983 et
al. etc.)

But: if only magnitudes of entries are used - structural information
may be lost

More complicated schemes may strongly influence implementations
(e.g., if both row and column access for intermediate quantities is
needed)

Plassman, Jones (1995): no structure, just the memory predictability,
see also Freund, Nachtigal, (1990). Similarly Lin, Moré with extended
memory. ILUT by Saad, (1994).

The importance of error matrix E = A− LLT understood (Duff,
Meurant, (1989)) and exploited (D’Azevedo, Forsyth, Tang, 1992)

14

Incomplete decompositions
Natural competitor of level-based methods: considering values

First simple combination of level-based approaches with dropping:
D’Azevedo, Forsyth, Tang, (1992a).

15

Incomplete decompositions
Natural competitor of level-based methods: considering values

First simple combination of level-based approaches with dropping:
D’Azevedo, Forsyth, Tang, (1992a).

Generally, convergence behavior can be far from predictable

15

Incomplete decompositions
Natural competitor of level-based methods: considering values

First simple combination of level-based approaches with dropping:
D’Azevedo, Forsyth, Tang, (1992a).

Generally, convergence behavior can be far from predictable

The real breakthrough in level-based approaches: cheap predictions by
Hysom, Pothen, (2002)

15

Incomplete decompositions
Natural competitor of level-based methods: considering values

First simple combination of level-based approaches with dropping:
D’Azevedo, Forsyth, Tang, (1992a).

Generally, convergence behavior can be far from predictable

The real breakthrough in level-based approaches: cheap predictions by
Hysom, Pothen, (2002)

Our MI22 preconditioner is a new way to use level-based information,
memory prediction and dropping at the same time.

15

Outline

1 Introduction: Preconditioned iterative methods

2 Goal of this talk

3 Algebraic preconditioners - direct incomplete decompositions

4 The importance of having structure

5 Conclusions

16

First component of our approach: new setting of levels

Preassign levels to the entries individually

17

First component of our approach: new setting of levels

Preassign levels to the entries individually
Computing the absolute values of the smallest and largest entries of
A: msmall and mbig.

17

First component of our approach: new setting of levels

Preassign levels to the entries individually
Computing the absolute values of the smallest and largest entries of
A: msmall and mbig.
Distribute nonzero entries uniformly by log |aij | into
ngroup0 = [log(mbig) − log(msmall)] + 1 groups. Shrink zero
groups to get ngroup of them.

17

First component of our approach: new setting of levels

Preassign levels to the entries individually
Computing the absolute values of the smallest and largest entries of
A: msmall and mbig.
Distribute nonzero entries uniformly by log |aij | into
ngroup0 = [log(mbig) − log(msmall)] + 1 groups. Shrink zero
groups to get ngroup of them.
Set level(i, j) for individual entries: For ℓ < ngroup:
level(i, j) = (ℓ− 1) ∗ (l/ngroup) + 1 where l (1 ≤ l ≤ ngroup0) is
the index of the group aij belongs to, and slightly differently
otherwise.

17

First component of our approach: new setting of levels

Preassign levels to the entries individually
Computing the absolute values of the smallest and largest entries of
A: msmall and mbig.
Distribute nonzero entries uniformly by log |aij | into
ngroup0 = [log(mbig) − log(msmall)] + 1 groups. Shrink zero
groups to get ngroup of them.
Set level(i, j) for individual entries: For ℓ < ngroup:
level(i, j) = (ℓ− 1) ∗ (l/ngroup) + 1 where l (1 ≤ l ≤ ngroup0) is
the index of the group aij belongs to, and slightly differently
otherwise.
During the IC(ℓ) decomposition, entries of the factor L that
correspond to nonzero entries of A are assigned the level level(i, j).

17

First component of our approach: new setting of levels

Preassign levels to the entries individually
Computing the absolute values of the smallest and largest entries of
A: msmall and mbig.
Distribute nonzero entries uniformly by log |aij | into
ngroup0 = [log(mbig) − log(msmall)] + 1 groups. Shrink zero
groups to get ngroup of them.
Set level(i, j) for individual entries: For ℓ < ngroup:
level(i, j) = (ℓ− 1) ∗ (l/ngroup) + 1 where l (1 ≤ l ≤ ngroup0) is
the index of the group aij belongs to, and slightly differently
otherwise.
During the IC(ℓ) decomposition, entries of the factor L that
correspond to nonzero entries of A are assigned the level level(i, j).
Each potential fill entry lij is assigned a level

level(i, j) = min
1≤l≤min{i,j}

{level(i, l) + level(l, j) + 1}.

A fill entry is permitted provided level(i, j) ≤ k.

17

First component of our approach: new setting of levels
Experiments: Kohn-Sham equation, n=250500

Effects individual level preassignments

18

First component of our approach: new setting of levels
Experiments: Kohn-Sham equation, n=250500

Effects individual level preassignments

20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

7

8
x 10

6

18

First component of our approach: new setting of levels
Experience from the experiments

Notes on the experiments

19

First component of our approach: new setting of levels
Experience from the experiments

Notes on the experiments

(+) Settings do not increase timings significantly.

19

First component of our approach: new setting of levels
Experience from the experiments

Notes on the experiments

(+) Settings do not increase timings significantly.

(-)The improvements are often small. We intend to construct a
robust strategy which should be used as a default value.

19

First component of our approach: new setting of levels
Experience from the experiments

Notes on the experiments

(+) Settings do not increase timings significantly.

(-)The improvements are often small. We intend to construct a
robust strategy which should be used as a default value.

Open problem: determine more sophisticated rules to preassign levels.

19

Second component of our approach: keeping structure

Integrate the predefined factor structure with dropping

20

Second component of our approach: keeping structure

Integrate the predefined factor structure with dropping

Symbolic part of out modified (MI22) IC(ℓ) predefines the structure.

20

Second component of our approach: keeping structure

Integrate the predefined factor structure with dropping

Symbolic part of out modified (MI22) IC(ℓ) predefines the structure.

Only very small entries from the structure are not kept. The space is
then freed and can be further used.

The final size parametrized by memory multiplier 0 ≤ θ.

20

Second component of our approach: keeping structure

Integrate the predefined factor structure with dropping

Symbolic part of out modified (MI22) IC(ℓ) predefines the structure.

Only very small entries from the structure are not kept. The space is
then freed and can be further used.

The final size parametrized by memory multiplier 0 ≤ θ.

Additional space distributed (1) uniformly or (2) nonuniformly.

20

Second component of our approach: keeping structure

Integrate the predefined factor structure with dropping

Symbolic part of out modified (MI22) IC(ℓ) predefines the structure.

Only very small entries from the structure are not kept. The space is
then freed and can be further used.

The final size parametrized by memory multiplier 0 ≤ θ.

Additional space distributed (1) uniformly or (2) nonuniformly.

Nonuniform distribution
based on the elimination tree
and its row subtrees

20

Second component of our approach: keeping structure

Integrate the predefined factor structure with dropping

Symbolic part of out modified (MI22) IC(ℓ) predefines the structure.

Only very small entries from the structure are not kept. The space is
then freed and can be further used.

The final size parametrized by memory multiplier 0 ≤ θ.

Additional space distributed (1) uniformly or (2) nonuniformly.

Nonuniform distribution
based on the elimination tree
and its row subtrees

20

Second component of our approach: keeping structure

Integrate the predefined factor structure with dropping

Symbolic part of out modified (MI22) IC(ℓ) predefines the structure.

Only very small entries from the structure are not kept. The space is
then freed and can be further used.

The final size parametrized by memory multiplier 0 ≤ θ.

Additional space distributed (1) uniformly or (2) nonuniformly.

Nonuniform distribution
based on the elimination tree
and its row subtrees

i

20

Second component of our approach: keeping structure

Integrate the predefined factor structure with dropping

Symbolic part of out modified (MI22) IC(ℓ) predefines the structure.

Only very small entries from the structure are not kept. The space is
then freed and can be further used.

The final size parametrized by memory multiplier 0 ≤ θ.

Additional space distributed (1) uniformly or (2) nonuniformly.

Nonuniform distribution
based on the elimination tree
and its row subtrees

i

20

Second component of our approach: keeping structure

Experiments with memory multiplier θ = 1: more difficult problem

4.5 5 5.5 6 6.5 7

x 10
6

18

20

22

24

26

28

30

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

x 10
7

0

5

10

15

20

25

MI22 ILUT (ICT)
NASASRB, structural mechanics, n=54870

21

Second component of our approach: keeping structure

Experiments with memory multiplier θ = 1: simpler problem

2.5 3 3.5 4 4.5 5 5.5

x 10
5

12

13

14

15

16

17

18

19

20

21

5 5.5 6 6.5 7 7.5 8

x 10
5

0

50

100

150

200

250

300

350

400

450

MI22 ILUT (ICT)
S1RMT3M1, cylindrical shell problem, n=5489

22

MI22 with levels versus IC(τ)(also via MI22)
TUBE1, cylindrical shell, n=21498

struc drop=0.0 drop=10−7

level size its size its
5 1250952 † 1227570 †

6 1660827 429 1618808 423
7 1807337 405 1756733 408
8 2178312 272 2104496 281
9 2368289 260 2280081 267
10 3026431 184 2873613 185
11 3968731 426 3656826 335
12 4874629 † 4398086 †

13 5849563 † 5178688 †

14 6840871 664 5938543 647
15 7838623 262 6680235 215

IC(τ) size its
55 280626 †

50 1458024 †

45 2076970 †

40 2252687 †

1e-3 16139618 †

1e-4 9001342 †

5e-5 9649083 471
2e-5 9610841 87
1e-5 10050227 18
5e-6 10741254 6
1e-6 12451396 2

0 21802746 1

23

MI22 with levels versus IC(τ)(also via MI22)
TUBE1, cylindrical shell, n=21498

struc drop=0.0 drop=10−7

level size its size its
5 1250952 † 1227570 †

6 1660827 429 1618808 423
7 1807337 405 1756733 408
8 2178312 272 2104496 281
9 2368289 260 2280081 267
10 3026431 184 2873613 185
11 3968731 426 3656826 335
12 4874629 † 4398086 †

13 5849563 † 5178688 †

14 6840871 664 5938543 647
15 7838623 262 6680235 215

IC(τ) size its
55 280626 †

50 1458024 †

45 2076970 †

40 2252687 †

1e-3 16139618 †

1e-4 9001342 †

5e-5 9649083 471
2e-5 9610841 87
1e-5 10050227 18
5e-6 10741254 6
1e-6 12451396 2

0 21802746 1

But: Reorderings may minimize the effect.

23

MI22 and memory multiplier θ < 1
simple problem, 2D POISSON on a square, n=10000

memory drop=0.0 drop=10−4

0.2 10000 160 10000 160
0.3 11880 226 11880 226
0.4 15840 205 15840 205
0.5 19800 155 19800 155
0.6 27729 141 27721 142
0.7 35597 111 35524 111
0.8 39583 63 39583 63
0.9 39584 58 39584 63
1 39601 41 39601 41

1.5 59401 42 59401 43
2 79202 42 79202 42
3 118803 42 118803 40
4 158404 42 158404 42
5 198005 44 198005 39
8 316808 42 316808 32
10 396010 42 396010 22
15 594015 37 471092 6
20 792020 27 471092 6 24

Outline

1 Introduction: Preconditioned iterative methods

2 Goal of this talk

3 Algebraic preconditioners - direct incomplete decompositions

4 The importance of having structure

5 Conclusions

25

Conclusions

Preserving the structure may play significant role in incomplete
decompositions.

26

Conclusions

Preserving the structure may play significant role in incomplete
decompositions.

Codes may be reasonably fast and robust.

26

Conclusions

Preserving the structure may play significant role in incomplete
decompositions.

Codes may be reasonably fast and robust.

MI22 code of Harwell Subroutine Library offers a way to implement
this.

26

Conclusions

Preserving the structure may play significant role in incomplete
decompositions.

Codes may be reasonably fast and robust.

MI22 code of Harwell Subroutine Library offers a way to implement
this.

Thank you for your attention!

26

Last but not least

Thank you for your attention!

27

Last but not least

Thank you for your attention!

27

Last but not least

Thank you for your attention!

27

Last but not least

Thank you for your attention!

27

	Algebraic preconditioners
	Introduction: Preconditioned iterative methods
	Goal of this talk
	Algebraic preconditioners - direct incomplete decompositions
	The importance of having structure
	Conclusions

