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Motivation: Example I

1. Solving systems of nonlinear equations

F (x) = 0

⇓

Sequences of linear algebraic systems of the form

J(xk)(xk+1 − xk) = −F (xk), J(xk) ≈ F
′(xk)
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Motivation: Example I

1. Solving systems of nonlinear equations

F (x) = 0

⇓

Sequences of linear algebraic systems of the form

J(xk)(xk+1 − xk) = −F (xk), J(xk) ≈ F
′(xk)

solved until for some k, k = 1, 2, . . .

‖F (xk)‖ < tol

J(xk) may change both structurally and numerically
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Motivation: Examples II and III

2. Solving equations with a parabolic term

∂u

∂t
−∆u = f
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2. Solving equations with a parabolic term

∂u

∂t
−∆u = f

⇓

diagonal changes in the sequence of linear systems
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Motivation: Examples II and III

2. Solving equations with a parabolic term

∂u

∂t
−∆u = f

⇓

diagonal changes in the sequence of linear systems

3. Nonlinear convection-diffusion problems

−∆u+ u∇u = f

⇓

more general sequences of linear systems, upwind discretizations,
anisotropy: possibly more structural nonsymmetry
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Motivation: Our goals

The talk considers a general sequence of linear systems

A(i)x = b(i), i = 1, 2, . . .
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Motivation: Our goals

The talk considers a general sequence of linear systems

A(i)x = b(i), i = 1, 2, . . .

Such sequences arise in numerous applications like CFD problems,
operation research problems, Helmholtz equations, . . .

The central question for efficient solution of sequences of linear
systems is:

How can we share a part of the computational effort throughout the
sequence ?
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Outline

1 Our goal and a short summary of related work

2 The basic triangular updates

3 Triangular updates in matrix-free environment

4 An alternative strategy for matrix-free environment
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Our goal and some related work

Our goal

We concentrate on sequences arising from Newton-type iterations to solve
nonlinear equations,

J(xk)(xk+1 − xk) = −F (xk), k = 1, 2, . . .

where J(xk) is the Jacobian of F evaluated at xk.
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Our goal and some related work

Our goal

We concentrate on sequences arising from Newton-type iterations to solve
nonlinear equations,

J(xk)(xk+1 − xk) = −F (xk), k = 1, 2, . . .

where J(xk) is the Jacobian of F evaluated at xk.

A black-box approximate preconditioner update designed for
nonsymmetric linear systems solved by arbitrary iterative methods.

Its computation should be much cheaper than the computation of a
new preconditioner.

Interested in its behaviour in matrix-free environment: effort to
decrease counts of matvecs to compute the subsequent systems.
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Our goal and some related work: II.

Short summary of related work

Freezing approximate Jacobians (using the same approximate
Jacobian) over a couple of subsequent systems and, in this way,
skipping some evaluations of the approximate Jacobian (MNK:
Shamanskii, 1967; Brent, 1973).
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Our goal and some related work: II.

Short summary of related work

Freezing approximate Jacobians (using the same approximate
Jacobian) over a couple of subsequent systems and, in this way,
skipping some evaluations of the approximate Jacobian (MNK:
Shamanskii, 1967; Brent, 1973).

Freezing preconditioners over a couple of subsequent systems
(periodic recomputation) (MFNK: Knoll, McHugh, 1998; Knoll,
Keyes, 2004). Naturally, a frozen preconditioner will deteriorate when
the system matrix changes too much.

Physics-based preconditioners (preconditioning by discretized simpler
operators like scaled diffusion operators for convection-diffusion
equations and/or using fast solvers; using other physics-based
operator splittings; using symmetric parts of matrices) (only a
selection from huge bibliography: Concus, Golub, 1973; Elman,
Schultz, 1986; Brown, Saad, 1990; Knoll, McHugh, 1995; Knoll,
Keyes, 2004)
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Our goal and some related work: III.

In Quasi-Newton methods the difference between system matrices is
of small rank and preconditioners may be efficiently adapted with
approximate small-rank preconditioner updates; see e.g. Bergamaschi,
Bru, Martínez, Putti (2006); Nocedal, Morales, 2000.
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In Quasi-Newton methods the difference between system matrices is
of small rank and preconditioners may be efficiently adapted with
approximate small-rank preconditioner updates; see e.g. Bergamaschi,
Bru, Martínez, Putti (2006); Nocedal, Morales, 2000.

Further bunch of possible ways: Krylov subspace recycling, exact
updates of LU-factorizations, etc ...

To enhance the power of a frozen preconditioner one may also use
approximate preconditioner updates.

◮ Approximate preconditioner updates of incomplete Cholesky
factorizations, Meurant, 2001.

◮ banded preconditioner updates were proposed for both symmetric
positive definite approximate inverse and incomplete Cholesky
preconditioners, Benzi, Bertaccini, 2003, 2004.

◮ Approximate preconditioner updates based on approximate
inverses are considered in Calgaro, Chehab, Saad, 2009.
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The considered preconditioner updates: I.

Triangular updates from Duintjer Tebbens, T., 2007

Consider two systems

Ax = b, and A+x+
= b+

preconditioned by M and M+ respectively and let the difference matrix

be defined as

B ≡ A− A+.
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The considered preconditioner updates: I.

Triangular updates from Duintjer Tebbens, T., 2007

Consider two systems

Ax = b, and A+x+
= b+

preconditioned by M and M+ respectively and let the difference matrix

be defined as

B ≡ A− A+.

Define the standard splitting

B = LB +DB + UB

and let M be factorized as

M = LDU ≈ A.

We would like M+ to be an update of M that is similarly powerful.
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2. The considered preconditioner updates: II.

In particular, if ||A−M || is the accuracy of the preconditioner M for A,
we will try to find an updated M+ for A+ with comparable accuracy,
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2. The considered preconditioner updates: II.

In particular, if ||A−M || is the accuracy of the preconditioner M for A,
we will try to find an updated M+ for A+ with comparable accuracy,

Lemma

Let ||A− LDU || = ε||A|| < ||B||. Then M+ = L(DU −B) with

DU −B ≈ DU −B satisfies

|| A+ −M+|| ≤

≤
‖L‖ ‖DU −B −DU −B‖+ ||L− I|| ‖B‖ + ε||A||

||B|| − ε||A||
· ||A+ − LDU ||.
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2. The considered preconditioner updates: II.

In particular, if ||A−M || is the accuracy of the preconditioner M for A,
we will try to find an updated M+ for A+ with comparable accuracy,

Lemma

Let ||A− LDU || = ε||A|| < ||B||. Then M+ = L(DU −B) with

DU −B ≈ DU −B satisfies

|| A+ −M+|| ≤

≤
‖L‖ ‖DU −B −DU −B‖+ ||L− I|| ‖B‖ + ε||A||

||B|| − ε||A||
· ||A+ − LDU ||.

DU −B should be close to DU −B. Similar lemma with LD −B.

||L− I|| should be small
||M+ −A+|| can be even smaller than ||M −A||.

Possible to state some (weak) existence results.
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The considered preconditioner updates: III.

We propose the preconditioner update of the form

M+ ≡ (LD − LB −DB)U or M+ ≡ L(DU −DB − UB).

That is, DU −B = DU −DB − UB, LD −B = LD − LB −DB .
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Recomp A+ ≈ L+U+ solves with L+, U+ A+, L+, U+

Update — solves with L,U, triu(B) A+, triu(A), L, U
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The considered preconditioner updates: III.

We propose the preconditioner update of the form

M+ ≡ (LD − LB −DB)U or M+ ≡ L(DU −DB − UB).

That is, DU −B = DU −DB − UB, LD −B = LD − LB −DB .

Note that M+ is for free and its application asks for one forward and one
backward solve. Schematically,

type initialization solve step memory

Recomp A+ ≈ L+U+ solves with L+, U+ A+, L+, U+

Update — solves with L,U, triu(B) A+, triu(A), L, U

This is the basic idea; more sophisticated improvements are possible

Ideal for upwind/downwind modification but our experiments cover
broader spectrum of problems
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Some experimental results with the updates

(Birken, Duintjer Tebens, Meister, T., 2007)

flow around a NACA0012 airfoil, angle of attack: 20,
4605 cells of FVM (n=18420), Mach 0.8
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Some experimental results with the updates: II.

supersonic flow around a cylinder, FVM, n=83976, 3000 steps of implicit
Euler method
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Possible improvements

Gauss-Seidel type updates

L(DU +DB + UB)), (LD +DL + LB)U

↓

L(LC +DC)D−1
C (UC +DC), C = DU −B

(LC +DC)D−1
C (UC +DC)U, C = LD −B
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Possible improvements

Gauss-Seidel type updates

L(DU +DB + UB)), (LD +DL + LB)U

↓

L(LC +DC)D−1
C (UC +DC), C = DU −B

(LC +DC)D−1
C (UC +DC)U, C = LD −B

switching formulas based on norms ||I − L|| and ||I − U ||

implementation: sparse merge of triangular matrices

possible parametrized relaxation of the updated.

some related theory based on decay properties/diagonal dominance
and/or ILU(0) preconditioner.

See Duintjer Tebbens, T., 2007a
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Experimental results: driven cavity problem

Example: Driven cavity problem

∆∆u+R

(

∂u

∂y

∂∆u

∂x
−
∂u

∂x

∂∆u

∂y

)

= 0,

2D on unit square

13-point finite differences

u = 0 on ∂Ω and ∂u(0, y)/∂x = 0, ∂u(1, y)/∂x = 0,
∂u(x, 0)/∂x = 0 and ∂u(x, 1)/∂x = 1

modest Reynolds numbers R in order to avoid potential discretization
problems
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Experimental results: driven cavity problem: II.

Table: Driven cavity problem with R=50, n=2500, nnz=31504, ILU(0.01).

ILU(0.01), psize ≈ 47000
Matrix Recomp Freeze Str. upd. Unstr. upd. Unstr. upd.fr
A(0) 93 93 93 93 93

A(1) 269 88 88 177 177

A(2) > 500 242 156 391 245

A(3) > 500 196 179 266 230

A(4) > 500 284 298 227 202

A(5) > 500 > 500 144 221 202

A(6) > 500 306 132 210 226

overall time ∞ ∞ 7 s 17 s 11 s
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Experimental results: driven cavity problem: III.

Table: Driven cavity problem with R=10, n=2500, nnz=31504, ILU(0.01).

ILU(0.01), psize ≈ 47000
Matrix Recomp Freeze Str. upd. Unstr. upd. Unstr. upd.fr
A(0) 84 84 84 84 84

A(1) 84 91 95 180 180

A(2) 312 239 119 197 180

A(3) 261 155 119 222 227

A(4) 352 > 500 190 165 171

A(5) 259 266 163 170 167

A(6) 291 262 150 182 182

overall time 12 s ∞ 7 s 16 s 10 s
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1 Our goal and a short summary of related work

2 The basic triangular updates

3 Triangular updates in matrix-free environment

4 An alternative strategy for matrix-free environment
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Matrix-free updates and matvecs

Krylov subspace methods do not require the system to be stored
explicitly; a matrix-vector product (matvec) subroutine, based on a
function evaluation, suffices.

⇒ important reduction of storage and computational costs.
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Matrix-free updates and matvecs

Krylov subspace methods do not require the system to be stored
explicitly; a matrix-vector product (matvec) subroutine, based on a
function evaluation, suffices.

⇒ important reduction of storage and computational costs.

Standard example: Newton iteration of the form

J(xk)(xk+1 − xk) = −F (xk), k = 1, 2, . . .

where J(xk) is the Jacobian of F evaluated at xk.

Matvec with J(xk) is replaced by the standard difference
approximation,

J(xk) · v ≈
F (xk + h‖xk‖v)− F (xk)

h‖xk‖
,

for some small h.
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Matrix-free updates and matrix estimation

In order to compute an incomplete factorization in matrix-free
environment, the system matrix has to be estimated by matvecs
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Efficient estimation of a banded matrix

























♠ ∗
♠ ∗ ∗
∗ ∗ ♠
∗ ♠ ∗
♠ ∗ ∗
∗ ∗ ♠
∗ ♠ ∗
♠ ∗

























Columns with “red spades” can be computed at the same time in one
matvec since sparsity patterns of their rows do not overlap. Namely,
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In order to compute an incomplete factorization in matrix-free
environment, the system matrix has to be estimated by matvecs

We need to know its sparsity pattern

Efficient estimation of a banded matrix

























♠ ∗
♠ ∗ ∗
∗ ∗ ♠
∗ ♠ ∗
♠ ∗ ∗
∗ ∗ ♠
∗ ♠ ∗
♠ ∗

























Columns with “red spades” can be computed at the same time in one
matvec since sparsity patterns of their rows do not overlap. Namely,

A(e1 + e4 + e7) computes entries in the columns 1, 4 and 7.
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Matrix estimation: II.

How to approximate a matrix by small number of matvecs if we know
matrix pattern:

Example 2: Efficient estimation of a general matrix



















∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗



















Again, By one matvec can be computed the columns for which sparsity
patterns of their rows do not overlap.
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Matrix estimation: II.

How to approximate a matrix by small number of matvecs if we know
matrix pattern:

Example 2: Efficient estimation of a general matrix



















♠ ∗ ∗
♠ ∗ ∗
∗ ♠ ∗

♠ ∗ ∗
∗ ∗ ♠

∗ ∗ ♠



















Again, By one matvec can be computed the columns for which sparsity
patterns of their rows do not overlap.

For example, A(e1 + e3 + e6) computes entries in the columns 1, 3 and 6.
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Matrix estimation: II.

How to approximate a matrix by small number of matvecs if we know
matrix pattern:

Example 2: Efficient estimation of a general matrix



















♠ ♠ ♠
♠ ♠ ♠
♠ ♠ ♠

♠ ♠ ♠
♠ ♠ ♠

♠ ♠ ♠



















Entries in A can be computed by four matvecs.
In each matvec we need to have structurally orthogonal columns.
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4. Matrix estimation: III.

Efficient matrix estimation: well established field

Structurally orthogonal columns can be grouped
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4. Matrix estimation: III.

Efficient matrix estimation: well established field

Structurally orthogonal columns can be grouped

Finding the minimum number of groups: combinatorially difficult
problem (NP-hard)

Classical field: a (very restricted) selection of references: Curtis,
Powell; Reid,1974; Coleman, Moré, 1983; Coleman, Moré, 1984;
Coleman, Verma, 1998; Gebremedhin, Manne, Pothen, 2007.

◮ extensions to SPD (Hessian) approximations

◮ extensions to use both A and AT in automatic differentiation
◮ not only direct determination of resulting entries (substitution

methods)
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4. Matrix estimation: IV.

Efficient matrix estimation: graph coloring problem
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♠ ♠ ♠
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3

4

5

6

In the other words, columns which form an independent set in the
graph of ATA (called intersection graph) can be grouped ⇒ a graph
coloring problem for the graph of ATA.

Problem: Find a coloring of vertices of the graph of ATA (G(ATA)) with
minimum number of colors such that edges connect only vertices of

different colors

25



General notes on matrix estimation

The matrix estimation works even when the pattern is only
approximate Cullum, T., 2006
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General notes on matrix estimation

The matrix estimation works even when the pattern is only
approximate Cullum, T., 2006

Recomputing the preconditioner requires for every linear system:

◮ Additional matvecs to estimate the current matrix

◮ Rerunning the graph coloring algorithm if the nonzero pattern
changes during the sequence. Not always necessary - in our
experiments we do not use it.

How about the preconditioner updates?
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Updates and matrix-free environment

Recall the upper triangular update is of the form

M+ = L(DU −DB − UB)

based on the splitting

LB +DB + UB = B = A−A+.
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Updates and matrix-free environment

Recall the upper triangular update is of the form

M+ = L(DU −DB − UB)

based on the splitting

LB +DB + UB = B = A−A+.

Thus the update needs some entries of A and A+ and repeated estimation
is necessary.

However:

A has been estimated before to obtain the reference ILU-factorization

Of A+ we need estimate only the upper (lower) triangular part

Can there be taken any advantage of the fact we estimate only the
upper triangular part?
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Updates in matrix-free environment

Example:


















∗ ∗
∗ ∗

. . .
...

. . . ∗
∗ ∗ ∗ ∗ ∗



















estimating the whole matrix asks for n matvecs with all unit vectors;

estimating the upper triangular part requires only 2 matvecs,

(1, . . . , 1, 0)T and (0, . . . , 0, 1)T .

The problem of estimating only the upper triangular part is an example of
the partial graph coloring problem, Pothen et al., 2007.
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Updates in matrix-free environment: II.

Let us remind that the graph coloring algorithm for a matrix C works
on the intersection graph

G(CTC).
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Updates in matrix-free environment: II.

Let us remind that the graph coloring algorithm for a matrix C works
on the intersection graph

G(CTC).

We intend to estimate only a matrix triangular part triu(C).

Lemma

The graph coloring algorithm for triu(C) works on

G(triu(C)T triu(C)) ∪GK , where

GK = ∪ni=1Gi, Gi = (Vi, Ei) = (V, {{k, j}| cik 6= 0 ∧ cij 6= 0 ∧ k < i ≤ j})

29



Updates in matrix-free environment: III.

The estimates should be combined with an a priori sparsification

significantly less matvecs may be needed to estimate triu(C) than to
estimate C.

The partial matrix estimation depends on matrix reordering.

Summarizing,
type initialization solve step memory

Recomp est(A+), A+ ≈ L+U+ solves with L+, U+ L+, U+

Update est(triu(A+)) solves with L,U, triu(B) triu(A+), triu(A), L,
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Updates in matrix-free environment and experiments

Example: Structural mechanics problem.

A small strain metal viscoplasticity model for a rectangular plate of
length 100, width 21.2 and height 9.62 cm with a hole in the middle;

The discretization used 1 350 quadratic elements in most of the
domain;

Newton algorithm where every time-step contains an inner loop
requires the solution of nonlinear systems

We consider here a sequence of linear systems from a randomly
chosen time-step in the middle of the simulation process;

This sequence consists of 8 linear systems of dimension 4 936 with
matrices containing about 315 000 nonzeros;

We use restarted GMRES(40) preconditioned by ILUT.

Kindly provided by Karsten Quint (Universität Kassel).
31



Updates in matrix-free environment and experiments: II.

Number of function evaluations for different precondition strategies.

ILUT(10−5, 50),Psize ≈ 812 000
Matrix Recompute Freeze Update

GMRES estim GMRES estim GMRES estim

A(0) 65 89 65 89 65 89

A(1) 31 89 128 0 52 25

A(2) 35 89 163 0 45 25

A(3) 35 89 237 0 45 25

A(4) 37 89 167 0 52 25

A(5) 38 89 169 0 51 25

A(6) 37 89 168 0 51 25

A(7) 50 89 168 0 51 25

Total fevals 1 040 1 354 701
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An alternative strategy for matrix-free environment

An alternative strategy circumvents estimation of A+:

Let the matvec be replaced with a function evaluation

A+ · v → F+(v), F+ : Rn → R
n,

e.g. in Newton’s method

J(x+) · v ≈
F (x+ + h‖x+‖v)− F (x+)

h‖x+‖
≡ F+(v).
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An alternative strategy circumvents estimation of A+:

Let the matvec be replaced with a function evaluation

A+ · v → F+(v), F+ : Rn → R
n,

e.g. in Newton’s method

J(x+) · v ≈
F (x+ + h‖x+‖v)− F (x+)

h‖x+‖
≡ F+(v).

We assume function components are well separable, i.e. we assume it is
possible to compute the components F+

i : Rn → R,

F+
i (v) = eTi F

+(v)

at the cost of about one n−th of the full function evaluation F+(v).
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An alternative strategy for matrix-free environment

An alternative strategy circumvents estimation of A+:

Let the matvec be replaced with a function evaluation

A+ · v → F+(v), F+ : Rn → R
n,

e.g. in Newton’s method

J(x+) · v ≈
F (x+ + h‖x+‖v)− F (x+)

h‖x+‖
≡ F+(v).

We assume function components are well separable, i.e. we assume it is
possible to compute the components F+

i : Rn → R,

F+
i (v) = eTi F

+(v)

at the cost of about one n−th of the full function evaluation F+(v).

Then the following strategy can be beneficial:
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An alternative strategy for matrix-free environment: II.

The forward solves with L in M+ = L(DU −DB − UB) are trivial.

For the backward solves, use a mixed explicit-implicit strategy: Split

DU −DB − UB = DU − triu(A) + triu(A+)

in the explicitly given part

X ≡ DU − triu(A)

and the implicit part triu(A+).
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An alternative strategy for matrix-free environment: II.

The forward solves with L in M+ = L(DU −DB − UB) are trivial.

For the backward solves, use a mixed explicit-implicit strategy: Split

DU −DB − UB = DU − triu(A) + triu(A+)

in the explicitly given part

X ≡ DU − triu(A)

and the implicit part triu(A+).

We then have to solve the upper triangular systems
(

X + triu(A+)
)

z = y,

yielding the standard backward substitution cycle:
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An alternative strategy for matrix-free environment: III.

zi =
yi −
∑

j>i xijzj −
∑

j>i a
+
ijzj

xii + a
+
ii

, i = n, n− 1, . . . , 1.

The sum
∑

j>i a
+
ijzj can be computed by the function evaluation

∑

j>i

a+ijzj = eTi A
+(0, . . . , 0, zi+1, . . . , zn)

T ≈ F+
i

(

(0, . . . , 0, zi+1, . . . , zn)
T
)

.

The diagonal {a+11, . . . , a
+
nn} can be found by computing

a+ii = F+
i (ei), 1 ≤ i ≤ n.

Summarizing, with this technique we can obtain the cost comparison:

type initialization solve step memory
Recomp est(A+), A+ ≈ L+U+ solves with L+, U+ L+, U+

Update est(diag(A+)) solves with L,U , eval(F), eval(F+) L,U
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Experimental results again

As an example consider a two-dimensional nonlinear convection-diffusion
model problem: It has the form

−∆u+Ru

(

∂u

∂x
+
∂u

∂y

)

= 2000x(1 − x)y(1− y), (1)

on the unit square, discretized by 5-point finite differences on a uniform
grid.

The initial approximation is the discretization of u0(x, y) = 0.

We use here R = 500 and a 250 × 250 grid.

We use a Newton-type method and solve the resulting 10 to 12 linear
systems with BiCGSTAB with right preconditioning.

We use a flexible stopping criterion.

Fortran implementation (embedded in the UFO - software for testing
nonlinear solvers).
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Experimental results again: II.
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3. Updates in matrix-free environment
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For more details see:

Duintjer Tebbens J, Tůma M: Preconditioner Updates for Solving Sequences

of Linear Systems in Matrix-Free Environment, submitted to NLAA in 2008.

Birken Ph, Duintjer Tebbens J, Meister A, Tůma M: Preconditioner

Updates Applied to CFD Model Problems, Applied Numerical Mathematics vol. 58,

no. 11, pp.1628–1641, 2008.

Duintjer Tebbens J, Tůma M: Improving Triangular Preconditioner Updates

for Nonsymmetric Linear Systems, LNCS vol. 4818, pp. 737–744, 2007.

Duintjer Tebbens J, Tůma M: Efficient Preconditioning of Sequences of

Nonsymmetric Linear Systems, SIAM J. Sci. Comput., vol. 29, no. 5, pp. 1918–1941,

2007.

Thank you for your attention!
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