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Motivation: I.

Solving large, sparse systems of linear algebraic equations
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Motivation: I.

Solving large, sparse systems of linear algebraic equations

Ax = b

Contemporary decompositional interpretation of the Gaussian elimination
(GE): Householder at the end of the latest 50’s.

Both different and similar role of GE in the two basic solving approaches:

Direct methods and iterative methods

Case of our interest: Relaxed GE (incomplete decompositions of various
kinds).
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Motivation: II.

Incomplete decompositions and their implementation.

GE: We need sparsity (in the input matrix, elimination graphs’
estimates, intermediate data) and the speed of the whole
computation.
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Incomplete decompositions and their implementation.

GE: We need sparsity (in the input matrix, elimination graphs’
estimates, intermediate data) and the speed of the whole
computation.

The sparsity does not seem to be particularly critical when considering
plain incomplete decompositions (ID). But, fast implementations of
contemporary ID may cause problems.

Fortunately, some data structures originally developed for direct
methods (and not used there anymore) can be successfully used.

Fast implementations of sophisticated GE modifications are possible
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Motivation: III.

Incomplete decompositions and robustness

Robustness of ID jointly with the iterative method is what really
critical is.
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Incomplete decompositions and robustness

Robustness of ID jointly with the iterative method is what really
critical is.

Partial robustness: in its evaluation (breakdown-free property).
◮ May be based on relaxing accuracy of decomposition (decomposing a

different matrix)
◮ Or, may promote density of the decomposition (restricting the

incompleteness (numerically or structurally))

Stability of ID: important in combination with iterative methods.

Is is to possible to guarantee more robustness for decompositions by
relating them to GE?

In the other words, how far are we from GE-aware decompositions?
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Motivation: IV.

ID affects the iterative method via its inverse.
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Motivation: IV.
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Motivation: IV.
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Motivation: IV.
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Motivation: IV.
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Motivation: V.

Concluded motivation

Consulting / employing matrix inverse may provide useful information
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Motivation: V.

Concluded motivation

Consulting / employing matrix inverse may provide useful information

Two extreme cases of incomplete decompositions:
◮ approximate inverse decompositions (direct ID)

◮ direct incomplete decompositions (inverse ID)

Our tools: joint treatment of both direct and inverse decompositions.

Is this a way to GE-aware decompositions?

What we do not discuss here?

Modifications of the basic algorithm (basic diagonal modifications,
general diagonal compensations with respect to some matvecs etc.)

a priori diagonal changes

matrix pre/post processings

embedding into a more general (e.g. multilevel) scheme.

Analysis of the described schemes
12 / 44



Summarizing our starting points and goals

Starting points

Approximate inverse decompositions (Kolotilina, Yeremin, 1993;
Benzi, Meyer, T., 1996; Benzi, T., 1998 etc.)
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Summarizing our starting points and goals

Starting points

Approximate inverse decompositions (Kolotilina, Yeremin, 1993;
Benzi, Meyer, T., 1996; Benzi, T., 1998 etc.)

Successful use of parts of factorized matrix inverse used in
inverse-based incomplete decompositions (Bollhöfer, Saad, 2002;
Bollhöfer, 2003)

A particular goal: Combined use of direct and inverse incomplete
decompositions

One of the tools: generalized biconjugation formula

Here we try to get inside GE, not to study/defend a synthetic approach.
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Limits of ID: BCSSTK38, n = 8032, nz = 181, 746

ID: Limitations in predictability and efficiency
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Generally no clear dependence on the error size, pattern etc.
This is a very common kind of behavior 16 / 44



Overcoming some limits: individual level preassignments
Experiments: Kohn-Sham equation, n=250500

Effects individual level preassignments
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see the talk of Jennifer Scott at SIAM ALA 2009, Monterey 17 / 44
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Generalized Gram-Schmidt (GGS)

Generalized Gram-Schmidt: basics of SPD case

Orthogonalize columns of I using the inner product 〈 , 〉A
We get (instead of A = QDR with R unit upper triangular):

I = ZU

◮ U is unit upper triangular, as usual (U = LT for A = LLT ).
◮ Z is orthogonal in 〈 , 〉A

ZTAZ = D (Biconjugate decomposition)

◮ But: Z is unit upper triangular as well (Z = L−T for A = LLT )
Easy to reveal decomposed matrix inverse:

A−1
= ZD−1ZT ,
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Generalized Gram-Schmidt: II.

Resulting direct and inverse ID may be practical in the incomplete case

I = ZDU

A ≈ LLT , U ≈ LT , Z ≈ L−1

Origins: more papers in 40’s and early 50’s (Escalator method by
Morris (1946), Vector method by Purcell (1952), Fox, Huskey,
Wilkinson (1948)).

The sparse incomplete method can be implemented: AINV (Benzi,
Meyer, T., 1996; Benzi, T., 1998)
Computational procedures to compute sparse incomplete U in this
way: RIF (Benzi, T., 2003)
As we will see, both Z and U can be computed breakdown-free, but
this is not all that we may want.
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Generalized Gram-Schmidt: III.

Generalized Gram-Schmidt: the (SPD) algorithm

I = ZU ≡ [z1, . . . , zn] (uij)i,j

for i=1, n

for j=1, i-1 with nonzero uij = eTj Azi
(j)

zi
(j) = zi

(j−1) − zj
(j−1) e

T
j Azi

(j−1)

eTj Azj
(j−1)

end j

end i

Forcing partial robustness: different formulas which are the same in
exact arithmetic: the breakdown-free variant SAINV

But: in order to get U we must get Z: direct factor is obtained via
the inverse factor
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Generalized Gram-Schmidt: IV.

Generalized Gram-Schmidt I = ZU : the data dependence graphically

Z L

done
not used

useddone

UT =
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Generalized Gram-Schmidt: IV.

Generalized Gram-Schmidt I = ZU : the data dependence graphically

Z L

done
not used

useddone

UT =

One way transfer of information
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Two resulting general problems
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Two resulting general problems

1 Is there a practical scheme of decomposition that would have an
arbitrary transfer of information between direct and inverse factors?

2 Very good behavior of SAINV observed also in the incomplete case
with respect to the non-stabilized algorithm cannot be explained just
by breakdown-free property
What is behind the clearly superior performance of the stabilized
decomposition with respect to its standard form? Is it possible to get
similar enhancement for direct decompositions?

We have (some) answers for both of these problems

1. Arbitrary direct-inverse decompositions

2. Transforming the problem via projections.

Of course, it remains a lot to do to improve GE-based decompositions
from inside.
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New shifted biconjugation

Note: general nonsymmetric formulation is used here
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j

ajz
(j−1)
i

ajz
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j

, w
(j)
i = w

(j−1)
i − w

(j−1)
j

aTj w
(j−1)
i

aTj w
(j−1)
j

⇓

s−1I −A−1 = ZD−1V T

Analogical recursions:

zi = sei −
i−1
∑

j=1

vTj ei

dj
zj , vi = (ai − sei)T −

i−1
∑

j=1

zTj (ai − sei)

dj
vj,

Z and D are the same in both recursions
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More on the new biconjugation

The (s−1I −A−1)−1) biconjugation introduced by Bru, Cerdán,
Marín, Mas, 2003. The incomplete algorithm was proposed as an
approximate inverse preconditioner. (factor Z)
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More on the new biconjugation

The (s−1I −A−1)−1) biconjugation introduced by Bru, Cerdán,
Marín, Mas, 2003. The incomplete algorithm was proposed as an
approximate inverse preconditioner. (factor Z)

It was shown that this new biconjugation can be used to get a direct
decomposition (factor U) as well, Bru, Marín, Mas, T., 2008.

s−1I −A−1 = ZD−1V T and A = LDU and Z = U−1

s−1I − U−1D−1L−1 = U−1D−1V T

s−1I = U−1D−1(L−1 + V T )

upper triangularր տ lower triangular
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More on the new biconjugation: II.

Pictorially

V =
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, diag(V ) = D − sI. (1)

27 / 44



More on the new biconjugation: II.

Pictorially

V =

























. . . −sL−T

. . .

UTD
. . .

























, diag(V ) = D − sI. (1)

V obtained by a simple recursion for its columns

27 / 44



More on the new biconjugation: II.

Pictorially

V =

























. . . −sL−T

. . .

UTD
. . .

























, diag(V ) = D − sI. (1)

V obtained by a simple recursion for its columns

The new recursions provide scaled U and L−1 at the same time!

Dropping can interconnect their computation.

27 / 44



New biconjugation in the SPD case

Note that s−1I −A−1 = ZD−1V T , V = LD − sL−T , Z = L−T

vi = (ai − sei)T −
i−1
∑
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dj
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New biconjugation in the SPD case

Note that s−1I −A−1 = ZD−1V T , V = LD − sL−T , Z = L−T

vi = (ai − sei)T −
i−1
∑

j=1

zTj (ai − sei)

dj
vj ,

We do not need to compute Z at all!

This is correct strictly mathematically, but computationally?

Still the inverse factor influences the direct factor.

L−1 −→ L

But, dropping can interconnect computation of both L and L−1.

We drop L using sizes of entries in L−1 and vice versa: balanced
incomplete factorization, Bru, Mas, Marín, T. 2008.

Is is the best strategy we can do?
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Balanced incomplete factorization (BIF) experiments
SPD experiments: I.

Example: matrix PWTK, n=217,918, nnz=5,926,171
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Balanced incomplete factorization (BIF) experiments: II.

Of course: not only pros; cons as well

Taking approximate inverses into account, dropping must be always
strong. Prefiltration of entries of A is a must.
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Of course: not only pros; cons as well

Taking approximate inverses into account, dropping must be always
strong. Prefiltration of entries of A is a must.

We used the inverse-based dropping rules based on Saad, Bollhöfer,
2002, but dropping should be further investigated. It seems that
sometimes any rules influence entries of the factors nonuniformly.
Also, our dropping often forces skipping a lot of updates in the
decomposition. Is this really the right way to go?

The convergence curve is often rather flat if we run many iterations.
Is the accuracy sufficient for solving sequences from nonlinear solvers?
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Balanced incomplete factorization (BIF) experiments: III.
SPD experiments: II.
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Direct-inverse decomposition

Vector formulation of the shifted biconjugation can hide important
details Bru, Mas, Marín, T. 2009
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Direct-inverse decomposition

Vector formulation of the shifted biconjugation can hide important
details Bru, Mas, Marín, T. 2009

vi = (ai − sei)T −
i−1
∑

j=1

zTj (ai − sei)

dj
vj ,

k

p

vpi: just the entries of V with indices p+ 1, . . . , i− 1 are involved

good, but not enough: the inverse factor still updated only by entries
of the inverse factor
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Direct-inverse decomposition: II.

Even more sophisticated computation possible

Here we demonstrate the computation in the fully nonsymmetric case
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Direct-inverse (NBIF) decomposition: experiments: II.
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Figure: Sizes of NBIF and ILU(τ) preconditioners versus iteration counts of the
preconditioned BiCGStab method for the matrix CHEM_MASTER1.
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Scaling parameter

Choice of scaling parameter s / computational procedures should be
coordinated
Here we demonstrate the computation in the fully nonsymmetric case
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Condition number estimation
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Condition number estimation: II.

50 Random matrices A forming AAT
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Condition number estimation: III.

50 Random matrices A forming A+AT with an additional shift
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Condition number estimation: IV.

50 Random matrices A forming A+AT , different shift

0 10 20 30 40 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

40 / 44



Condition number estimation: V.

6 Harwell-Boeing matrices, not via BIF
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condition estimators.

It is possible to construct a direct (GE-like) decomposition using
orthogonal projections.

Do we really understand Gaussian elimination in the sense to expect
all future improvements of GE-like decompositions from the inside?
Of course, not.

The way from efficient rules of decomposition to fully
GE-aware algorithms may be very long
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