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Projections onto Krylov subspaces

A x = b, A ∈ CN×N , r0 = b−Ax0

An xn = bn

Here xn approximates the solution x using the restriction and
projection onto low dimensional subspaces

Kn(A, r0) ≡ span {r0, Ar0, · · · , A
n−1r0}

.
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Nonlinearity and moments

The idea of restrictions and projections using Krylov subspaces is in a
fundamental way linked with the problem of moments.

The story goes back to Gauss (1814), Jacobi (1826),
Christoffel (1858, 1877), Chebyshev (1875), Stieltjes (1883-84) ...

And continues within the computational mathematics

by the works of Krylov (1931), Hestenes and Stiefel (1952),
Gordon (1968), Golub and many co-workers (1968 - ) ...
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Outline

1. Krylov subspace methods as matching moments model reduction

2. Spectral information and GMRES
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1 : Moment problem

Consider a non-decreasing distribution function ω(λ), λ ≥ 0 with the
moments given by the Riemann-Stieltjes integral

ξk =

∫ ∞

0

λk dω(λ) , k = 0, 1, . . . .

Find the distribution function ω(n)(λ) with n points of increase λ
(n)
i

which matches the first 2n moments for the distribution function ω(λ) ,

∫ ∞

0

λk dω(n)(λ) ≡

n
∑

i=1

ω
(n)
i (λ

(n)
i )k = ξk, k = 0, 1, . . . , 2n− 1 .
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1 : Model reduction via matching moments I

Gauss-Christoffel quadrature formulation:

∫ ∞

0

f(λ) dω(λ) ≈
n

∑

i=1

ω
(n)
i f(λ

(n)
i ) ,

where the reduced model given by the distribution function with n points
of increase ω(n) matches the first 2n moments

∫ ∞

0

λk dω(λ) =
n

∑

i=1

ω
(n)
i (λ

(n)
i )k , k = 0, 1, . . . , 2n− 1 .
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1 : Stieltjes recurrence

Let p1(λ) ≡ 1, p2(λ), . . . , pn+1(λ) be the first n + 1 orthonormal

polynomials corresponding to the distribution function ω(λ) .

Then, writing Pn(λ) = (p1(λ), . . . , pn(λ))T ,

λPn(λ) = Tn Pn(λ) + δn+1 pn+1(λ) en

represents the Stieltjes recurrence (1883-4), with the Jacobi matrix

Tn ≡















γ1 δ2

δ2 γ2
. . .

. . .
. . . δn

δn γn















, δl > 0 .
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1 : Stieltjes recurrence - earlier related works

Early continued fractions-related recurrences:

Brouncker (1655), Wallis (1656), Euler (1748).
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1 : Matrix computation: Lanczos ≡ Stieltjes

In matrix computations, Tn results from the Lanczos process (1951)
applied to Tn starting with e1 . Therefore p1(λ) ≡ 1, p2(λ), . . . , pn(λ)
are orthonormal with respect to the inner product

(ps, pt) ≡
n

∑

i=1

|(z
(n)
i , e1)|

2 ps(θ
(n)
i ) pt(θ

(n)
i ) ,

where z
(n)
i is the orthonormal eigenvector of Tn corresponding to the

eigenvalue θ
(n)
i , and pn+1(λ) has the roots θ

(n)
i , i = 1, . . . , n .

Consequently,

ω
(n)
i = |(z

(n)
i , e1)|

2 , λ
(n)
i = θ

(n)
i ,
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1 : Conjugate gradients (CG) for Ax = b

Given A HPD, b, x0, r0 ,

‖x− xn‖A = min
u∈x0+Kn(A,r0)

‖x− u‖A

with the formulation via the Lanczos process, w1 = r0/‖r0‖ ,

A Wn = Wn Tn + δn+1wn+1e
T
n , Tn = W ∗

n(A) A Wn(A) ,

and the CG approximation given by

Tn yn = ‖r0‖ e1 , xn = x0 + Wn yn .
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1 : CG ≡ matrix formulation of the Gauss Q

Ax = b , x0 ←→

∫ ξ

ζ

λ−1 dω(λ)

↑ ↑

Tn yn = ‖r0‖ e1 ←→
n

∑

i=1

ω
(n)
i

(

θ
(n)
i

)

−1

xn = x0 + Wn yn

ω(n)(λ) −→ ω(λ)
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1 : Model reduction via matching moments II

CG (Lanczos) reduces for A HPD at the step n the original model

A x = b , r0 = b−Ax0

to

Tn yn = ‖r0‖ e1 ,

such that the the 2n moments are matched,

w∗
1 Ak w1 = eT

1 T k
n e1 , k = 0, 1, . . . , 2n− 1 .

Closely related to the works of
Gauss, Jacobi, Chebyshev, Stieltjes, Markov, ...
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1 : Comments on literature

Proofs of results related to moments or model reduction are in the
literature typically based on factorizations of the matrix of moments,
Golub and Welsh (1969), Dahlquist, Golub and Nash (1978), . . . ,
Kent(1989), . . . , which is also true for Antoulas (2005).

It is interesting to recall the paper of Chebyshev from (1875), which uses a
moment matching expansion of the continued fraction and which may be
considered a starting point of the general theory of orthogonal
polynomials, see Gragg (1974), Kuijlaars and Rakhmanov (1999).

w∗(λI − A)−1w =

N
∑

j

ωj

λ− λj
=

2n
∑

ℓ

ξℓ−1

λℓ
+ O(λ−(2n+1))
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1 : Comments on literature

Moment matching techniques have been used for decades in
computational physics and in computational chemistry, see the
remarkable papers by Gordon (1968), Reinhard (1979) ...

Gauss quadrature formulation related to the nonsymmetric Lanczos
process and to the Arnoldi process was given by Freund and Hochbruck
(1993), motivated by Fischer and Freund (1992). Gauss quadrature was
formally extended to the complex plane by Saylor and Smolarski (2001),
with motivation from inverse scattering problems in electromagnetics by
Warnick (1997), . . . , Golub, Stoll and Wathen (2008), S and Tich y
(2009).

Matrix of moments as well as any formal generalization of the Gauss
quadrature formulas to the complex plane can be avoided by using
the Vorobyev method of moments.
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1 : Vorobyev moment problem - 1958, 1965

The restricted og projected op. An = WnW ∗
n A WnW ∗

n = Wn Tn W ∗
n

satisfies by definition

An w1 = A w1 ,

An (A w1) ≡ A2
n w1 = A2w1 ,

...

An (An−2w1) ≡ An−1
n w1 = An−1w1 ,

An (An−1w1) ≡ An
n w1 = WnW ∗

n (Anw1) ,

which gives the result for CG, Lanczos

w∗
1 Ak w1 = w∗

1 Ak
n w1 = eT

1 T k
n e1 , k = 0, 1, . . . , 2n− 1 .
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1 : Non-Hermitian Lanczos (BiCG), [S-2009]

Given a nonsingular A ∈ CN×N , v1 ∈ C
N , w1 ∈ C

N , v∗1 w1 = 1 ,

A Wn = Wn Tn + δn+1 wn+1 eT
n ,

A∗ Vn = Vn T ∗
n + β∗

n+1 vn+1 eT
n ,

V ∗
n Wn = In , Tn = V ∗

n (A, v1, w1) A Wn(A, v1, w1) .

We assume that the algorithm does not break down
in steps 1 through n (it can break down later).
Then, using the Vorobyev method of moments,

v∗1 Ak w1 ≡ eT
1 T k

n e1 , k = 0, 1, . . . , 2n− 1 ,

i.e., n steps of the non-Hermitian Lanczos (or BiCG) represent
a model reduction which matches the first 2n moments.
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1 : Arnoldi ( FOM (GMRES)) [S -2009]

The construction looks similar to the Hermitian case.
Due to A non-Hermitian the last line of the Vorobyev moment problem
can not be used as above,

vT
1 Ak w1 ≡ vT

1 Ak
n w1 , k = 0, 1, . . . , n− 1 ,

and we get

vT
1 Ak w1 = (W T v1)

T Hk
n e1 , k = 0, 1, . . . , n− 1 ,

wT
1 Ak w1 = wT

1 Ak
n w1 = eT

1 Hk
n e1 , k = 0, 1, . . . , n ,

i.e., n steps of the Arnoldi (or FOM) represent
a model reduction which matches the first n or (n + 1) moments.
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1 : Question:

When does the spectral information determine

the solution of the problem of moments?
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Outline

1. Krylov subspace methods as matching moments model reduction

2. Spectral information and GMRES
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From Hermitian through normal to non-normal

Normal matrices have a full set of eigenvectors forming a basis of CN

which can be chosen orthonormal. Therefore the change to (orthonormal)
eigenvector coordinates does not involve any distortion of geometry.

Substantial difference from the Hermitian case which causes enormous
technical difficulties in proofs and in deriving bounds - the eigenvalues are
not real. However, principal difficulties come with non-normality.

We restrict ourselves to the GMRES method.
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Minimal residual methods

‖rn‖ = min
u∈x0+Kn(A,r0)

‖b−Au‖ = min
z ∈ AKn(A,r0)

‖r0 − z‖

⇔ rn ⊥ AKn(A, r0) .

(Hermitian) MINRES [Paige, Saunders - 75]
and GMRES [Saad, Schultz - 86];

mathematically equivalent to GCR analyzed in [Elman - 1982]
and to many other (mostly numerically inferior) methods.

MINRES is not a symmetric variant of GMRES.
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Bound by Elman for A normal

‖rn‖ = ‖pn(A)r0‖ = min
p∈Πn

‖p(A)r0‖ = min
p∈Πn

‖ S [p(Λ) S∗r0]‖

= min
p∈Πn

‖p(Λ) S∗r0‖ = min
p∈Πn

{
∑

i

| (s∗i r0) p(λi) |
2 }

1

2

≤ ‖r0‖ min
p∈Πn

max
i
|p(λi)| .

|pn(λi)| represents a multiplicative correction to the absolute values
|s∗i r0| of the individual components of r0 in the orthonormal basis
{y1, . . . , yN} in order to minimize the sum of squares.
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Bound by Elman for a general A

For a general S , some of the components S−1r0 in S [ p(J) S−1r0]
can become very large. In such case S [ p(J) S−1r0]
represents a significant cancelation. The minimization problem

‖rn‖ = min
p∈Πn

‖ S [ p(J) S−1r0]‖

reflects that, while the term in the bound

‖S‖ min
p∈Πn

‖ p(J) S−1r0 ‖

does not (cf. [Trefethen-97]).
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Problem :

The rate of convergence is often automatically linked to the distribution of
eigenvalues of the matrix A.

There are, however, examples showing that any (nonincreasing)
convergence curve is possible for GMRES with matrix A having any given
(nonzero) eigenvalues. [Greenbaum, S - 94], [Greenbaum, Pták, S - 96] ,
[Arioli , Pták, S - 98]

Assume convergence exactly in N steps (generalization to m < N
possible). For simplicity of notation r0 = b (x0 = 0).

Problem:

Given convergence curve, given N nonzero eigenvalues (not necessarily
distinct), describe the set of all {A, b} such that GMRES (A, b) generates
the curve while the spectrum of A is prescribed.
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Convergence curve

‖r0‖ ≥ ‖r1‖ ≥ · · · ≥ ‖rN−1‖ > ‖rN‖ = 0,

h ≡ (η1, . . . , ηN )T , ηj ≡ ((‖rj−1‖)
2 − ‖rj‖

2)1/2.

d ≡ (ν1, . . . , νN ), ν1 =
1

ηN
, ν2 = −

η1

ηN
, . . . , νN = −

ηN−1

ηN
.

Meaning? Let W = (w1, . . . , wj) be the orthonormal basis of AKj(A, r0).
Then

rn = r0 −
n

∑

j=1

wjηj , r0 =
n

∑

j=1

wjηj + rn, ‖r0‖
2 =

n
∑

j=1

η2
j + ‖rn‖

2
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Eigenvalues

{λ1, λ2, . . . , λN}, λj 6= 0, j = 1, . . . , n .

qN (z) ≡ zN −
N−1
∑

j=0

αjz
j = (z − λ1)(z − λ2) . . . (z − λN ),

pN (z) ≡ 1−
N

∑

j=1

ξjz
j = −

1

α0
qN (z), ξN =

1

α0
, ξj = −

αj

α0
,

s ≡ (ξ1, . . . , ξN )T , a = (α0, . . . , αN−1)
T
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Spectral companion matrix

C =















0 α0

1
. . . α1

. . . 0
...

1 αN−1















=

















0

1
. . .
. . . 0

1

a

















C−1 =

















s

1

0
. . .
. . . 1

0
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Problem solution

Theorem 2

The following two assertions are equivalent:

1◦ The spectrum of A is {λ1, . . . , λN} and GMRES(A, b) yields residuals
with the prescribed nonincreasing sequence

‖r0‖ ≥ ‖r1‖ ≥ · · · ≥ ‖rN−1‖ > ‖rN‖ = 0 .

2◦ Matrix A is of the form A = WRCR−1W ∗ and b = Wh where C is
the companion matrix corresponding to the polynomial qN (z), W is
unitary and R a nonsingular upper triangular matrix such that Rs = h.

Corollary: Any noninreasing convergence curve can be generated by
GMRES for a matrix having any prescribed eigenvalues.
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Problem solution

Denoting

Y ≡ RC−1 = R

















s

1

0
. . .
. . . 1

0

















=

















h

RN−1

0

















,

Then

A = WRCR−1W ∗ = W (RC−1)C(CR−1)W ∗ =

= W (RC−1)C(RC−1)−1W ∗ = WY C Y −1W ∗

Assertions 1◦ and 2◦ of Theorem 2 are equivalent to
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Problem solution

Theorem 2 (continuation)

3◦ Matrix A is of the form

A = WY CY −1W ∗

and b = Wh where C is the companion matrix corresponding to the
polynomial q(λ) , W is unitary and RN−1 part of Y is any (N − 1)
by (N − 1) nonsingular upper triangular matrix.
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Convection-diffusion model problem

Convection-diffusion model problem

Convection dominated: ν ≪ ‖w‖
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ν = 0.01 and ν = 0.0001

[Liesen, S - 2004, 2005]
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ν = 0.01 and ν = 0.0001

Which spectrum corresponds to which convergence curve?
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Concluding remarks

● initial phase is important, it depends on the right hand side!

● technique: orthonormal transformation to Jordan-like-structure (for the
convection-diffusion model problem
the matrix is diagonalizable!

● Given parametrization - a tool ?

● Eigenvalue solvers ?
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