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Saddle point problems

We consider a saddle point problem with the symmetric 2 x 2 block form
A B\ [(z\ _ (f
BT o0)\y) \o)°
@ A is a square n X n nonsingular (symmetric positive definite) matrix,

e B is a rectangular n x m matrix of (full column) rank m.

Applications: mixed finite element approximations, weighted least squares,
constrained optimization etc. [Benzi, Golub, and Liesen, 2005].
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Schur complement reduction method

o Compute y as a solution of the Schur complement system
B"AT'By=B"A""},
@ compute z as a solution of
Az = f — By.
Systems with A are solved inexactly, the computed solution @ of Au = b is
interpreted an exact solution of a perturbed system

(A+AA)a=0b+Ab, |[AA] < 7| A, |Ab]| < 7l|b]l, 76(A) < 1.
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Iterative solution of the Schur complement system

choose 1o, solve Axg = f — Byo

compute oz, and pgcy)

Yir1 =y + axpl?

solve Apgf) = —Bp,(cy)

back-substitution: outer

_ terati
Az =+ Oékpgf), inner iteration
B: solve Azp11 = f — Byni1, iteration

C: solve Aup, = f — Az, — Byg+1,

Tk+1 = Tk + Uk.

oy =P — cu BT
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Measure of the limiting accuracy

The limiting (maximum attainable) accuracy is measured by the ultimate
(asymptotic) values of:

@ the Schur complement residual: BTA~'f — BT A~ By,;
@ the residuals in the saddle point system: f — Az, — By and —BT zy;
© the forward errors: z — = and y — yi.

Numerical example:
A = tridiag(1,4,1) € R'°*'%° B = rand(100, 20), f = rand(100,1),
k(A) = ||A]|l - |[A7"|| = 7.1695 - 0.4603 ~ 3.3001,
k(B) = ||B|| - | BT|| = 5.9990 - 0.4998 ~ 2.9983.
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Accuracy in the outer iteration process

BT(A+AA)'Bj=BT(A+AA)'f,

_ _ A
T A=l _ BT A-1Ral < Tk( 1 21511,
|BTATf = BTAT Byl < s AT BRG]
e T a-1g, @) < OKA)

I=B A" f+ B A7 By =il < 7oy 1A HIBICA + 1BY)-

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
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Accuracy in the saddle point system

~BTAT' f+ BT A7 'Byy = —B 2 — BTAT'(f — Azi — Byx)

I = Az = Bl < S 111+ 1B,

BT,y < Ola2)r(A)
| =B ax —r"|| < = rr(A) IAT BN + 1B Y),

Y = max{||y:|||: =0,1,...,k}.

Back-substitution scheme ar | a2

A:  Generic update
Tit1 = Tk + QkPy,

B: Direct substitution
Thp1 = A (f — Byrs1) additional

C: Corrected dir. subst. system with A
Trt1 =z + A7N(f — Azr — Byri1)

(z) T u
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Direct substitution:
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Corrected direct substitution: z 1 = x5, + A~ (f — Az, — Byry1)
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Forward error of computed approximate solution

lz = zxll < llf — Az = Byl + 2|l = B zxll,
ly = giell < 72llf = Azx — Byl + 73l = B axll,

"= o';lin(A% V2 = U;Lin(BL V3 = — (BTA_IB)'

Omin

eIV YollgTa s

relative error norms [lx-x,,x-xl Iy-¥,lg7,

15 Pavel Jirdnek, Miroslav RozloZnik Inexact saddle point solvers and their limiting accuracy



Null-space projection method

e compute & € N(BT) as a solution of the projected system
(I - A(I — e = (I — ),
@ compute y as a solution of the least squares problem
By~ f - Az,
IT is the orthogonal projector onto R(B).

The least squares with B are solved inexactly, i.e. the computed solution v of
Buv = c is an exact solution of a perturbed least squares problem

(B+AB)t = c+ Ac, ||AB|| < 7||B||, [|Acl| < 7ll¢||, T6(B) < 1.
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Iterative solution of the null-space projected system

choose xg, solve Byo ~ f — Axo

compute o and p\* € N(B”)

Tk4+1 = Tk + Oékp( )

solve Bp(y) ( ) akApEf)

back—substltutlon: SUES
Ay =y +pY, inner iteration
B: solve Byx+1 ~ f — Azpy1, iteration

C: solve Buy ~ f — Azi+1 — By,

Yk+1 = Yk + Vk-

i =" —axAp” — By
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Accuracy in the saddle point system

17 — Az — By — ) < LOB 1y 4y,

(B)
T 7)k(B)
- B2l < 208 gy,
7r(B)
X = max{||z;]| | =0,1,...,k}.
Back-substitution scheme o3
A:  Generic update
() u
Yk+1 = Yk + Dy,
B: Direct substitution -
Yk4+1 = Bt(f — A$k+1) additional least
C: Corrected dir. subst. U square with B
Y1 = Yk + B (f — Azp1 — Byx)
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Generic update: yr11 = Yk —i—p,(ﬂy)
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Direct substitution: y41 = BY(f — Azpy1)

=107

\

=10

residual norm -8,

T=0()

g
i
£
3

Inexact saddle point solvers and their lim

ing accuracy




Corrected direct substitution: yg1 = yx + BT (f — Azpy1 — By)
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Conclusions

@ All bounds of the limiting accuracy depend on the maximum norm of
computed iterates, cf. [Greenbaum, 1997].

@ The accuracy measured by the residuals of the saddle point problem
depends on the choice of the back-substitution scheme [J, R, 2008].

o Care must be taken when solving nonsymmetric systems [J, R, 2007].

{elatve esiual noms [8TA”H-8TA- 8y 118TA") and ()

o 5 10 10 20 25 30 3% 400 450
teration number k

@ The residuals in the outer iteration process and the forward errors of
computed approximations are proportional to the backward error in
solution of inner systems.
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Thank you for your attention.

http://www.cs.cas.cz/~miro
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