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Abstract. In adaptive numerical solution of partial differential equations, the local mesh re-
finement is used together with a posteriori error analysis in order to equilibrate the discretization
error distribution over the domain. Since the discretized algebraic problems are not solved exactly, a
natural question is whether the distribution of the algebraic error is analogous to the distribution of
the discretization error. This paper illustrates on an example of a simple one-dimensional boundary
value model problem that this may not hold. On the contrary, the algebraic error can have large local
components and it can therefore significantly dominate the total error in some part of the domain.
This can happen even if the globally measured algebraic error is comparable to or smaller than the
globally measured discretization error.

This phenomenon is on purpose illustrated on the simplest 1D model problem frequently used
in literature; the presented discrepancy between the spatial distribution of the discretization and
algebraic errors has not been reported, to our knowledge, in this context before.
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1. Introduction. In numerical solution of partial differential equations, a suf-
ficiently accurate solution (the meaning depends on the particular problem) of the
linear algebraic system arising from discretization has to be considered. When the
finite element method (FEM) is used for discretization, the system matrix is sparse.
The sparsity of the algebraic system matrix is presented as a fundamental advantage
of the FEM method. It allows to obtain a numerical solution when the problem is
hard and the discretized linear system is very large. It is worth, however, to exam-
ine some mathematical consequences which do not seem to be addressed in the FEM
literature.

The FEM generates an approximate solution in form of a linear combination of
basis functions with local supports. Each basis function multiplied by the proper
coefficient thus approximates the desired solution only locally. The global approxi-
mation property of the FEM discrete solution is then ensured by solving the linear
algebraic system for the unknown coefficients; the linear algebraic system links the
local approximation of the unknown function in different parts of the domain. If the
linear algebraic system is solved exactly, then all is fine. But in practice we do not
solve exactly. In hard problems we even do not want to achieve a small algebraic
error. That might be too costly or even impossible to set; see, e.g., [2, Sections 1–3],
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2 On distribution of errors in 1D Poisson model problem

[13, Sections 1 and 6], [19, Section 2.6], the discussion in [20, pp. 36 and 72], and [22,
Section 1]. Then, however, one should naturally ask whether the spatial distribution
of the algebraic error in the domain can significantly differ from the distribution of
the discretization error. There is no a priori evidence that these distributions are to
be analogous. On the contrary, from the nature of algebraic solvers, either direct or
iterative, there seems to be no reason for equilibrating the algebraic error over the
domain. Presented results then indeed demonstrate that the algebraic error can have
large local components and it can therefore significantly dominate the total error in
some part of the domain.

Following the standard methodology used in the numerical PDE literature for
decades (see, e.g., [3, 6, 8]), we consider the simplest one-dimensional boundary value
problem. Furthermore, in order to plot illustrative figures, we use a small number
of discretization nodes. Like in the standard literature we believe that the simplic-
ity of the model problem does not diminish the message. Since the model problem
has appeared in a vast amount of literature, it seems surprising that the presented
phenomenon has not been reported elsewhere.

The paper is organised as follows. We describe the model problem and present
the experimental observations in Section 2. In Section 3 the total error is interpreted
via the modification of the discretization mesh. Section 4 explains the local behavior
of the algebraic error using the spectral analysis and the approximation properties of
the algebraic solver (here the conjugate gradient (CG) method [12]). The paper ends
with concluding remarks.

2. Model problem. We consider the one-dimensional Poisson boundary value
problem

−u′′(x) = f(x) , 0 < x < 1 , u(0) = u(1) = 0 , (2.1)

where f(x) is a given (continuous) function, 0 ≤ x ≤ 1. This model problem is
frequently used in mathematical literature for illustrations of various analytical as
well as numerical phenomena; see, e.g., [6, Section 6.2.2], [8, Section 5.5], [17], [18,
Section 3.2.1].

Denoting by H1
0 (Ω) the standard Sobolev space of functions having square inte-

grable (weak) derivatives in Ω ≡ (0, 1) and vanishing on the end points (in the sense
of traces), the weak formulation of (2.1) looks for u ∈ H1

0 (Ω) such that

a(u, v) = `(v) for all v ∈ H1
0 (Ω) , (2.2)

where

a(u, v) ≡
∫ 1

0

u′ v′ , `(v) ≡
∫ 1

0

v f .

The bilinear form a(·, ·) introduces on H1
0 (Ω) the energy norm

‖v′‖ = a(v, v)1/2 , v ∈ H1
0 (Ω) . (2.3)

We discretize the problem (2.2) by the FEM on the uniform mesh with n inner nodes,
i.e. with the mesh size h = 1/(n + 1), using the continuous piecewise linear basis
functions φj , j = 1, . . . , n, satisfying

φj(jh) = 1 ,

φj(x) = 0 , 0 ≤ x ≤ (j − 1)h and (j + 1)h ≤ x ≤ 1 .
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The discretized problem then looks for uh ∈ Vh ≡ span{φ1, . . . , φn} such that

a(uh, vh) = `(vh) for all vh ∈ Vh . (2.4)

The finite-dimensional problem (2.4) can be equivalently formulated as the system of
the linear algebraic equations

Ax = b , (2.5)

where the stiffness matrix A ∈ Rn×n and the load vector b ∈ Rn are given by

A = [Aij ] , Aij = a(φj , φi), (2.6)

b = [b1, . . . , bn]
T
, bi = `(φi) , i, j = 1, . . . , n . (2.7)

The solution x = [ξ1, . . . , ξn]T of (2.5) contains the coefficients of the Galerkin FEM
solution uh of (2.4) with the respect to the FEM basis φ1, . . . , φn, i.e.

uh =

n∑
j=1

ξjφj . (2.8)

In the one-dimensional problem (2.1), the Galerkin FEM solution uh is known to
coincide with the solution u at the nodes of the mesh; see, e.g., [3, Corollary 4.1.1].
Therefore the coefficients ξj are equal to the values of u in the nodes,

ξj = u(jh) , j = 1, . . . , n . (2.9)

The stiffness matrix A has the tridiagonal form

A = h−1



2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 2

 . (2.10)

The eigenvalues λi and eigenvectors yi = [η1i, . . . , ηni]
T of A, i = 1, . . . , n, are known

analytically (for details and their relationship to the eigenvalues and eigenfunctions
of the continuous Laplace operator see, e.g., [4]),

λi = 4h−1 sin2

(
i π

2(n+ 1)

)
, (2.11)

ηji =

√
2

n+ 1
sin

(
j i π

n+ 1

)
, j = 1, . . . , n . (2.12)

The approximations wi to the eigenfunctions of the continuous operator are then given
by

wi =

n∑
j=1

ηji φj , wi(`h) = η`i . (2.13)
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Remark: Please note, that (unlike in 2D) the stiffness matrix A (2.10) corresponding
to the one-dimensional discretized Laplace operator (and therefore also its eigenvalues)
depends on the size h of the mesh through the multiplicative factor h−1. This is often
avoided by multiplying the system Ax = b by h, which does not affect the conditioning
of the matrix. Since the algebraic energy norms ‖z‖A and ‖z‖(hA) are different, such
scaling would later be inconvenient. We will therefore stay with the algebraic problem
Ax = b as above with A and b given by (2.6) and (2.7) respectively.

Let the system Ax = b be solved, for the purpose of numerical experiment, via
the CG method1. We certainly do not advocate using CG for practical solving of
similar model problems. We only wish to demonstrate on the simplest model problem
the possible irregular distribution of the algebraic error. Let

u
(k)
h =

n∑
j=1

ξ
(k)
j φj (2.14)

be the approximation to the Galerkin FEM solution uh (see (2.8)) given by the coordi-

nate vector xk = [ξ
(k)
1 , . . . , ξ

(k)
n ]T computed at the kth step of the CG method. Then

the squared energy norm of the error ‖(u− u(k)h )′‖2 satisfies as a simple consequence
of the Galerkin orthogonality the Pythagorean equality

‖(u− u(k)h )′‖2 = ‖(u− uh)′‖2 + ‖(uh − u(k)h )′‖2

= ‖(u− uh)′‖2 + ‖x− xk‖2A ; (2.15)

see, e.g., [5, Theorem 1.3, p. 38]. Given an initial approximation x0 and the corre-
sponding initial residual r0 ≡ b−Ax0 , the CG method minimizes the A-norm of the
algebraic error over the manifold x0 +Kk(A, r0) , where

Kk(A, r0) = span{r0,Ar0, . . . ,A
k−1r0}

is called the kth Krylov subspace generated by A and r0 ; see, e.g., [12, Theorem 4.3].

Consequently, the error of the approximation u
(k)
h determined by the CG approxima-

tion xk computed using exact arithmetic has the minimal energy norm ‖(u− u(k)h )′‖2
over all approximations determined by the coefficient vectors from x0 + Kk(A, r0).
The energy norm is relevant in many applications; see, e.g., [9, Section 2.2.1].

Remark: The equality (2.15) holds for any vector xk ∈ Rn and the corresponding

approximation u
(k)
h . In particular, it holds also for the results of the finite precision

CG computations.

Following [6, p. 120], we consider, as an example, the exact solution

u = exp(−5 (x− 0.5)2)− exp(−5/4) . (2.16)

We consider the FEM discretization using 19 inner nodes2, i.e. we set n = 19. The
solution u and the discretization error u−uh are given in Figure 2.1, with the squared

1We will use a general notation considering an initial approximation x0. All computations below
are performed, however, with the zero initial approximation x0 = 0.

2Such small number of nodes allows us to plot illustrative figures. However, similar results can
be obtained for any choice of n.
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energy and L2 norms of the discretization error equal (up to the negligible rounding
errors in evaluation of the norms) to

‖(u− uh)′‖2 = 6.8078e-3 respectively ‖u− uh‖2 = 1.7006e-6. (2.17)

The condition number of the matrix A is κ(A) = λn/λ1 = 161.4.
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Fig. 2.1. Left: the exact solution u (see (2.16)). Right: the discretization error u − uh; the
vertical axis is scaled by 10−3.

The squared A-norm of the algebraic error ‖x − xk‖2A at the iteration steps
k = 7, 8, 9, 10 of CG is given in the first column of Table 2.1. The second column
contains, for comparison, the squared Euclidean norm ‖x−xk‖2. For the energy and

the L2 norm of the total error u − u(k)h see the third and the fourth column, respec-
tively (please recall the corresponding norms of the discretization error u− uh given
by (2.17)).

Table 2.1

k ‖x− xk‖2A ‖x− xk‖2 ‖(u− u(k)h )′‖2 ‖u− u(k)h ‖2

7 6.3002e-2 9.9299e-3 6.9810e-2 4.9817e-4

8 1.4505e-2 9.5751e-4 2.1313e-2 4.9570e-5

9 1.2382e-3 2.7011e-5 8.0459e-3 3.0507e-6

10 6.3248e-30 2.2880e-31 6.8078e-3 1.7006e-6

Figure 2.2 shows the relative A-norm of the algebraic error ‖x− xk‖A/‖x− x0‖A
together with the loss of orthogonality among the normalized residual vectors (mea-
sured in the Frobenius norm) for the standard CG implementation (see [12]) and
for the CG implementation with double reorthogonalized residuals (see, e.g., [11]).
Since for the given data the loss of orthogonality remains close to the machine pre-
cision level, the effect of rounding errors in the standard CG implementation is here
negligible. Consequently, the standard finite precision CG behaves very similarly to
the double-reorthogonalized CG that simulates the computation in exact arithmetic;
see [11]. Taking into account the distribution of the eigenvalues of A and the choice
x0 = 0, this is to be expected; see [16].

The algebraic and total errors are visualized for k = 8, 9 in Figure 2.3. At the
9th step, the energy norm of the total error is dominated by the discretization error,
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Fig. 2.2. The relative A-norm of the error ‖x− xk‖A/‖x− x0‖A (solid line), the loss of
orthogonality in the standard CG implementation (dashed line) and the loss of orthogonality in
the CG implementation with double reorthogonalized residuals (dotted line). In our computations,
rounding errors do not play a significant role.

see (2.17) and Table 2.1. Providing that the spatial distributions of the discretization
and the algebraic error are similar, the contribution of the algebraic error to the total
error would be at any part of the domain Ω marginal. However, quite the opposite
is true. As shown in the right part of Figure 2.3, the algebraic error is significantly

localized at the 10th component ξ
(9)
10 of the vector x9 which is much less accurate,

in comparison to the exact solution x, than any of its other components. Despite

the relatively small energy norm ‖x− x9‖A, the total error u − u
(9)
h at the node

10 (which is in this 1D model problem nothing but the size of the 10th component
of the corresponding algebraic error x − x9) is much different than the total error
throughout the whole interval. The algebraic error substantially affects the shape of
the total error. The left part of Figure 2.3 shows for illustration the same quantities
for k = 8.
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Fig. 2.3. The algebraic error uh − u
(k)
h (dashed-dotted line) and the total error u− u(k)h (solid

line) at the 8th iteration (left) and at the 9th iteration (right). The vertical axis in the right part of
the figure is scaled by 10−3.

The presented example considers the simplest model problem. It does not prove that
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in practical problems the observed phenomenon appears on a catastrophic scale. On
the other hand, the presented result is disturbing and poses a question about many
commonly used ways of a posteriori error evaluation using global error measures, not
distinguishing the sources of error or considering only the discretization error.

One may object that if the error is measured in the L2 norm instead of the energy
norm, one does not see much discrepancy — both ‖x − x9‖A and ‖x − x9‖ are still
relatively large in comparison to ‖u − uh‖. This objection is, however, not to the
points that the global energy norm is not descriptive and that the spatial distribution
of the discretization and algebraic errors can be very different. Moreover, it can be
easily verified that in the 2D Poisson problem an objection concerning the L2 norm
does not substantiate; see [15, Section 5.1].

When the polynomial exact solution

u = (x− 2) (x− 1)x (x+ 1) (2.18)

is used instead of (2.16), we get with the same number of inner discretization nodes
n = 19 the following results. The exact solution u and the discretization error u− uh
are given in Figure 2.4; the discretization error u − uh is nonnegative. The squared
energy and L2 norms of the discretization error are equal to

‖(u− uh)′‖2 = 3.5000e-3 respectively ‖u− uh‖2 = 8.7495e-7.

Table 2.2 and Figures 2.5 and 2.6 give results analogous to those presented above in
Table 2.1 and Figures 2.2 and 2.3 respectively.
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Fig. 2.4. Left: the exact solution u (see (2.18)). Right: the discretization error u − uh; the
vertical axis is scaled by 10−4.

Table 2.2

k ‖x− xk‖2A ‖x− xk‖2 ‖(u− u(k)h )′‖2 ‖u− u(k)h ‖2

7 1.0112e-2 1.3654e-2 1.3612e-2 6.0367e-5

8 2.6905e-3 3.6997e-3 6.1905e-3 9.3021e-6

9 2.5563e-4 3.5534e-4 3.7556e-3 1.1605e-6

10 5.6776e-30 3.8081e-30 3.5000e-3 8.7495e-7
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Fig. 2.5. The relative A-norm of the error ‖x− xk‖A/‖x− x0‖A (solid line), the loss of
orthogonality in the standard CG implementation (dashed line) and the loss of orthogonality in the
CG implementation with double reorthogonalized residuals (dotted line).
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Fig. 2.6. The algebraic error uh − u
(k)
h (dashed-dotted line) and the total error u− u(k)h (solid

line) at the 8th iteration (left) and at the 9th iteration (right); the vertical axes are scaled by 10−3.

3. Interpretation of the total error as a modification of the discretiza-
tion mesh. As argued in [15, p. 9], it is desirable to interpret the inaccuracies in the
solution process (including the algebraic errors) in terms of the meaningful modifica-
tion of the mathematical model; see also [21, pp. 33–35]. This idea can be related
to the so-called functional backward error by Arioli and others (see, e.g., [1]) where
the errors are interpreted as (backward) perturbations of the weak formulation (2.2)
of the problem. Related to this we observe, however, a serious difficulty. The per-
turbation of (2.2) should be meaningful in the sense that it preserves the original
model. In our case we require that the problem after incorporating the functional
backward error would again represent a Poisson problem. Clearly, an introduction of
the functional backward error term counting for inaccurate solving of the discretized
algebraic problem into the problem (2.2) would not satisfy this natural requirement.
Therefore we consider the change of the discretization, i.e. the basis functions or the
mesh, a more appealing alternative.
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Interpreting the algebraic error as a transformation of the FEM basis has been
considered in [10, Section 3]. We will use the idea from [10] but present the result
in a slightly different way. Let the transformation of the basis Φ = [φ1, . . . , φn]
(in our problem the basis of continuous piecewise linear hat functions) to the basis

Φ̂ = [φ̂1, . . . , φ̂n] be represented by a square matrix D = [D`j ] ∈ Rn×n,

φ̂j = φj +

n∑
`=1

D`j φ` , j = 1, . . . , n . (3.1)

Please note that unlike the original FEM basis functions φj , the transformed basis

functions φ̂j , j = 1, . . . , n, need not be of a local support. The relation (3.1) can be
written in the compact form as

Φ̂ = Φ (I + D) ,

where I ∈ Rn×n denotes the identity matrix.
The transformation matrix D can be constructed in a following way. An easy

calculation shows that an approximate solution x̂ = [ξ̂1, . . . , ξ̂n]T of the algebraic
system Ax = b represents the exact solution of the perturbed system

(A + E)x̂ = b , (3.2)

where

E =
(b−Ax̂)x̂T

‖x̂‖2
. (3.3)

Let the Galerkin FEM solution uh (see (2.4)–(2.8)) satisfy

uh = Φx =

n∑
j=1

ξj φj =

n∑
j=1

ξ̂j φ̂j = Φ̂x̂ = Φ (I + D)x̂ (3.4)

for some (unknown) matrix D. Then, considering the Petrov-Galerkin discretization

of (2.2) with uh = Φ̂x̃, i.e. the discretization basis φ̂1, . . . , φ̂n , and the test functions
φ1, . . . , φn gives

a(uh, φi) = `(φi) , i = 1, . . . , n , (3.5)

which can be formulated as the system of the linear algebraic equations

Âx̃ = b,

where

Âij = a(φ̂j , φi) = a(φj +

n∑
`=1

D`j φ` , φi)

= Aij +

n∑
`=1

Ai`D`j ,

(3.6)
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i.e.

Â = A + AD. (3.7)

Consequently, knowing the algebraic perturbation matrix E from (3.2), we can set

AD = E , giving D = A−1E , (3.8)

with x̂ = x̃ the exact algebraic solution of (3.2) representing the Petrov-Galerkin
solution uh of (2.2) in the sense of (3.5).

Remark: Since E is determined by the algebraic errors in solving Ax = b, we have
no control of the sparsity of the transformation matrix D = A−1E, which is, in
general, dense. Therefore the transformed basis functions φ̂j , j = 1, . . . , n, have, in
general, global supports. This holds also when E is determined using componentwise
backward error with its structure of nonzeros entries determined, e.g., by the structure
of nonzeros in A. Since A−1 is, in general, dense, D = A−1E is also dense.

When we set x̂ = x8 for our experimental illustration with the exact solution
(2.16), the norms of the perturbation and transformation matrices are

‖E‖ = 3.2976e-1 , ‖D‖ = 1.4674e-2 .

Figure 3.1 gives the matrices E (see (3.3)) and D (see (3.8)) visualized using the
Matlab surf command. We can see the effect of the multiplication by A−1: the
transformation matrix D has significantly more entries with the size far from zero
than the perturbation matrix E. It should be pointed out that our example is on
purpose very simple and the mapping from E to D = A−1E is for the given A
rather benign (the norm ‖D‖ is even smaller than ‖E‖). In more practical problems
this may not be the case and D can have large nonzero elements. The left part of
Figure 3.2 shows (for the same approximation x̂ = x8) the example of the transformed

basis function φ̂j (here φ̂5; see (3.1)) . Since the entries of the matrix D are of the

order 10−3, φ̂5 looks visually the same as φ5. The difference φ̂5−φ5 is plotted in the
right part of Figure 3.2. For other basis functions the situation is analogous. The size
of the differences φ̂j − φj , j = 1, . . . , n, corresponds to the size of the algebraic error
(as well as the discretization error when the algebraic and discretization errors are in
balance).

When we consider the approximation x̂ = x9 given at the 9th CG iteration step,
the norms of the corresponding perturbation and transformation matrices are

‖E‖ = 1.2976e-1 , ‖D‖ = 2.4469e-3 ,

and the visualization of E,D and the difference φ̂j − φj , j = 1, . . . , n, is analogous.
For the second example with the exact solution (2.18) and the approximation

x̂ = x9 given at the 9th CG iteration step, the norms of the perturbation and trans-
formation matrices are

‖E‖ = 6.8757e-2 , ‖D‖ = 1.3220e-3 .

Figure 3.3 gives the matrix E and the matrix D. For the transformed basis function
φ̂11 and the difference φ̂11 − φ11 see Figure 3.4.
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Fig. 3.1. The perturbation matrix E (left) and the transformation matrix D (right) (with the
entries visualized using the Matlab surf command) for the approximation x̂ = x8 in the example
with the exact solution (2.16). The right vertical axis is scaled by 10−3.
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Fig. 3.2. The transformed basis function φ̂5 (left) and the difference φ̂5 − φ5 (right) for the
approximation x̂ = x8 in the example with the exact solution (2.16). For the other basis functions
the situation is analogous. The right vertical axis is scaled by 10−3; see the scale in the right part
of Figure 2.1.
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Fig. 3.3. The perturbation matrix E (left) and the transformation matrix D (right) (with the
entries visualized using the Matlab surf command) for the approximation x̂ = x9 in the example
with the exact solution (2.18). The right vertical axis is scaled by 10−4.
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Fig. 3.4. The transformed basis function φ̂11 (left) and the difference φ̂11 − φ11 (right) for the
approximation x̂ = x9 in the example with the exact solution (2.18). For the other basis functions
the situation is analogous. The right vertical axis is scaled by 10−4; see the scale in the right part
of Figure 2.4.

In the rest of this section we interpret (with some unimportant inaccuracy) the

total error u− u(9)h for the last example (the exact solution u is given by (2.18) and

u
(k)
h is determined using the approximation x9 computed at the 9th CG step) as the

discretization error u− uH , where the Galerkin FEM solution uH corresponds to a
new mesh and new basis functions which preserve the locality of their support. The
Galerkin FEM solution uH coincides with the solution u at the nodes of the mesh;
see [3, Corollary 4.1.1]. Therefore we construct the new mesh in such way that the

new nodes τi are given as the roots of the total error u− u(9)h (i.e. the discretization
error u− uH) and therefore

uH(τi) = u(τi) = u
(9)
h (τi) .

In order to interpret the large total error in the middle of the interval as the dis-
cretization error, we replace (with no claim for optimality) the central node 0.5 of the
original mesh by two nodes defined as 0.5± 0.7h, i.e.

τi , i = 1, . . . , 18 = roots of u− u(9)h for 0 < x < 0.5 ,

τ19 = 0.5− 0.7h ,

τ20 = 0.5 + 0.7h ,

τi , i = 21, . . . , 38 = roots of u− u(9)h for 0.5 < x < 1 .

(3.9)

The new mesh now consists of n = 38 inner nodes, with 36 of them forming 18 close
pairs. Please note that the new central element is 1.4 times longer than the elements
in the original (uniform) mesh3 , i.e. τ20 − τ19 = 1.4h.

Let ψj , j = 1, . . . , n, be the continuous piecewise linear FEM basis functions
satisfying

ψj(τj) = 1 ,

ψj(x) = 0 , 0 ≤ x ≤ τj−1 and τj+1 ≤ x ≤ 1 .

3This is the reason for denoting the Galerkin FEM solution corresponding to the new mesh with
the subscript H commonly used for denoting the quantities corresponding to a coarser mesh.
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As mentioned above, the Galerkin solution uH coincides with the solution u at the
nodes of the mesh. We can therefore write

uH =

n∑
j=1

ξj ψj , ξj = u(τj) , j = 1, . . . , n .

The discretization error u− uH is nonnegative and the squared energy and L2 norms

of the discretization error u− uH are close to the analogous quantities for u− u(9)h ,

‖(u− uH)′‖2 = 3.4224e-3 respectively ‖u− uH‖2 = 9.8141e-7 ,

while

‖(u− u(9)h )′‖2 = 3.7556e-3 respectively ‖u− u(9)h ‖
2 = 1.1605e-6 .

The comparison of the discretization error u−uH with the total error u−u(9)h is given
in the left part of Figure 3.5. With our choice of the nodes (3.9), the positive values

of u− u(9)h coincide, except for τ18 < x < τ21 , with the error u− uH ; see the detail of
the comparison in the right part of Figure 3.5. There is a slight discrepancy between

u− uH and u− u(9)h for τ18 < x < τ21 .
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Fig. 3.5. Left: the total error u− u(9)h for the original mesh (solid line) and the discretization

error u − uH on the modified mesh (dashed line); the vertical axis is scaled by 10−3. Right: the

detail showing the coincidence of the positive values of u− u(9)h with u− uH for most of the interval

and their slight discrepancy in the middle; the vertical axis is scaled by 10−4.

Interpretation of the total error as the error of the exact discretized solution using
a modified discretization mesh can rise, as illustrated above, interesting points. First,
the algebraic error can be interpreted, in the sense described above, as the loss of
locality of the support of the modified (Petrov-) Galerkin basis functions. Second,

the computed approximate solution u
(k)
h which includes the error in the solution of

the algebraic system can be interpreted (here with a small inaccuracy) as the discrete
solution (with the vanishing algebraic error) for a mesh which can possibly have
“holes” in the areas where the algebraic error is large (in our example the mesh has
a “hole” in the center of the interval).

4. Spatial distribution of the error in CG computations. In this section
we explain the behavior of the algebraic error observed above. In the following we
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present the experimental illustration with the exact solution (2.16); see also Fig-
ures 3.1 and 3.2. The exposition uses the close relationship between CG and the
Lanczos algorithm; for details see the original papers [12, 14] and also the survey [16].

Consider the spectral decomposition of the CG error at the kth step,

x− xk =

n∑
i=1

(x− xk,yi) yi , (4.1)

where, as above, yi denotes the ith normalized eigenvector of A corresponding to the

eigenvalue λi ; see (2.11)-(2.12). We denote by θ
(k)
j , j = 1, . . . , k, the approximations

of the eigenvalues of the matrix A (Ritz values) given at the kth iteration of the
Lanczos algorithm applied to the matrix A and the starting vector r0/‖r0‖ . Assum-

ing exact arithmetic, a close approximation of the eigenvalue λi by a Ritz value θ
(k)
j

means that the size of the ith component |(x− xk,yi)| of the error x− xk of the kth
CG approximation in the direction yi becomes small; see, e.g., [16, Theorem 3.3]. As
mentioned above, the effect of rounding errors is in our example negligible. Conse-
quently, the previous statement holds also for the presented results of finite precision
computations.

Since some eigenvalues of A are approximated by Ritz values much faster than
the others, this fact is reflected in the different behavior of the size of the spectral
components |(x− xk,yi)|, i = 1, . . . , n, as k increases, k = 0, 1, . . . . The individual
eigenvectors yi have different oscillating patterns; and therefore the individual spectral
components of x− xk can develop in a rather nonuniform way as k increases. Using

uh − u(k)h = Φ(x− xk) =

n∑
i=1

(x− xk,yi) Φyi =

n∑
i=1

(x− xk,yi)wi ,

this can result in a rather nonuniform spatial distribution of the algebraic (and the
total) error in Ω. We will illustrate this situation in the following figures.
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Fig. 4.1. Left: the squared size of the spectral components |(x− x0,yi)|2, i = 1, . . . , n, of the
initial error x − x0. Right: convergence of the Ritz values (circles) to the eigenvalues of A (dots)
in iterations 1 through 10.

The squared size of the spectral components |(x− x0,yi)|2, i = 1, . . . , n, of the
initial error x − x0 are given in the left part of Figure 4.1. Recall that x0 = 0 and
therefore the initial error is equal to the solution x. Since the solution is symmetric
with respect to the center 0.5 of the given interval, the spectral components with even



J. Papež, J. Liesen and Z. Strakoš 15

indices vanish (the corresponding projections computed in finite precision arithmetic
are on the machine precision level). Since the initial error x− x0 is smooth (i.e.
nonoscillating), the components of the error with higher indices, which correspond
to more oscillating eigenvectors (see (2.12)), significantly decrease with increasing

index i. The Ritz values θ
(k)
j , j = 1, . . . , k, are for k = 1, . . . , 10 given in the right

part of Figure 4.1. The dots represent the eigenvalues of matrix A. As expected, the
Ritz values approximate the eigenvalues with odd indices. At the 10th iteration, all
such eigenvalues are approximated, all components of the error x− x10 become very
small and the norm of the algebraic error drops to the machine precision level; see
Figure 2.2 and Table 2.1. We can observe that the eigenvalues λ1, λ2 and partially
also λ3 are approximated much faster (for smaller iteration number) than the others.

In Figure 4.2 the development of the squared size of the spectral components of
the algebraic error x− xk is shown for k = 0, 7, 8, 9 (only the values with odd indices
are plotted; the rest remain at the level 10−30). We can see that the CG method
reduces quickly the dominating spectral components of the error which corresponds
to the fast approximation of the eigenvalues λ1 and λ2 by the Ritz values illustrated
above. With increasing k the spectral components of x− xk almost equilibrate. As
a consequence, the spatial distribution of the error x− xk changes as k increases and
it eventually becomes highly nonuniform in the way substantially different than the
spatial distribution of the initial error x− x0.
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Fig. 4.2. The development of the squared size of the spectral components of the algebraic error
|(x− xk,yi)|2, i = 1, 3, . . . , 19, for the iteration steps k = 0, 7, 8, 9 (solid, dashed, dashed-dotted and
dotted lines respectively). We can observe equilibrating of the size of the spectral components as k
increases.

This situation is illustrated in Figures 4.3 and 4.4, where we plot the most domi-
nating approximations wi to the eigenfunctions of the continuous operator (see (2.13)
and (4.1)), corresponding to the initial error x − x0 and to the error x − x9 respec-
tively. The right bottom part of Figure 4.3 shows the algebraic part of the initial error
in the function space, which is given as the linear combination of the eigenfunction
approximations with odd indices

uh − u(0)h = Φ (x− x0) =

10∑
i=1

(x− x0,y2i−1)w2i−1 . (4.2)
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(As mentioned above, we use x0 = 0 and therefore uh−u(0)h = uh .) The right bottom
part of Figure 4.4 shows the algebraic part of the error

uh − u(9)h = Φ (x− x9) ≈
10∑
i=1

(x− x9,y2i−1)w2i−1 ; (4.3)

please compare with the algebraic error given in the right part of Figure 2.3. Here we
neglect the spectral components of x− x9 in the direction of even eigenvectors of A
which remain at the machine precision level (and therefore we use the approximation
instead of the equality).
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Fig. 4.3. The approximate eigenfunctions wi corresponding to the largest components of the

initial algebraic error x−x0 in the eigenvector basis of the matrix A and the algebraic part uh−u
(0)
h

of the initial error u− u(0)h (see (4.2)) (the dashed-dotted line in the right bottom part).

In the following remark we do not consider the effects of rounding errors (it can
easily be shown that for the given point their effects are not important). Since the
CG approximate solution xk satisfies xk ∈ x0 +Kk(A, r0) , we have

x− xk ∈ x− x0 +Kk(A, r0) .

The highly irregular spatial distribution of uh − u(9)h observed above is caused by elim-
inating (to some extent) the spectral components with slowly changing eigenvectors,

which dominate the initial error uh − u(0)h . As we have seen, all spectral components
eventually become almost equal in size and the effect of rapidly changing eigenvectors
becomes pronounced. This cannot be explained as one may seemingly suggest and as
we have several times experienced during the preparation of this paper, by adding an
“oscillatory” vector from Kk(A, r0) to x− x0 .

5. Conclusions. Using a simple 1D model problem, it is illustrated that the
spatial distribution of the algebraic error can significantly differ from the spatial dis-
tribution of the discretization error. Because of its possibly large local components
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Fig. 4.4. The approximate eigenfunctions wi corresponding to the largest components of the

algebraic error x − x9 in the eigenvector basis of the matrix A and the algebraic part uh − u
(9)
h of

the error u− u(9)h (see (4.3)) (the dashed-dotted line in the right bottom part). The vertical axis in

the right bottom part of the figure is scaled by 10−3.

in some parts of the domain, the algebraic error can determine the spatial distribu-

tion of the total error u− u(k)h even when its globally measured size (e.g. the energy

norm |||u− u(k)h ||| is small). It can be expected that an analogous phenomenon can be
observed for practical problems.

The demonstrated difference between the spatial distributions of the algebraic
and the discretization error across the domain (here obtained for the CG method)
underlines importance of constructing reliable stopping criteria in iterative algebraic
solvers. In particular, such criteria should be related to the spatial distribution of the
total error in the function space. A work in this direction has been recently done, e.g.,
in [13, Section 6] and in a more general nonlinear setting in [7]. One should also recall
the goal oriented adaptivity approach of Rannacher, Becker and their collaborators in
the context of duality-based error control, which allows balancing discretization and
iteration error in the problem-related areas of interest; see, e.g., the survey paper [19]
and the references given there. We believe that further developments focusing on the
spatial distribution of the algebraic and total errors will be reported in a near future.
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