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Abstract

We present a roundoff error analysis of the method for solving linear least

squares problem minx ‖b − Ax‖ with full column rank matrix A, using only

factors Σ and V from the SVD decomposition of A = UΣV T . This method

(called SNESV D here) is an analogue of the method of seminormal equa-

tions (SNEQR), where the solution is computed from RT Rx = AT b, using

the factor R from the QR factorization of A. Such methods have practical

applications when A is large and sparse and if one needs to solve least squares

problems with the same matrix A and multiple right-hand sides. However,

they are not numerically stable for all A. We analyze one step of fixed pre-

cision iterative refinement to improve the accuracy of the SNESV D method.

We show that under mild conditions this method (called CSNESV D) pro-
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duces a forward stable solution. We illustrate our analysis by numerical

experiments.
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1. Introduction

We study the numerical properties of some correction methods for semi-

normal equations for solving linear least squares problem

min
x
‖b− Ax‖, (1)

where A ∈ Rm×n has full column rank, n = rank(A) ≤ m and b ∈ Rm. There

exists only one solution x∗ ∈ Rn to (1) and x∗ satisfies the normal equations

AT Ax∗ = AT b. (2)

Therefore, x∗ = A†b, where A† = (AT A)−1AT denotes the pseudoinverse of A.

There are many algorithms for solving (1) using factorization of the matrix

A. For example, if we apply Householder QR decomposition: A = QR

where Q ∈ Rm×n is left orthogonal (i.e. QT Q = In) and R ∈ Rn×n is

nonsingular upper-triangular, then the normal equations can be written as

RT Rx∗ = RT QT b, so we can simply solve the system Rx∗ = QT b. However,

if m � n we can use only the R-factor, we do not store Q and solve the

seminormal equations (SNE) (cf.[1])

RT Rx∗ = AT b. (3)
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However, numerical properties of these two methods are very different (cf.[2]–

[1]). Similar approach can be applied to other factorization of A. For ex-

ample, if A = UCV T where U ∈ Rm×n is left orthogonal, V ∈ Rn×n is

orthogonal and C has a simple structure (triangular, bidiagonal, diagonal),

then we can consider the class of equations

CT C(V T x∗) = V T (AT b). (4)

One of the goals of SNE in (3) is that we do not need to have Q, while in

(4) we do not store the matrix U but we need the matrix V . The dimension

n is often much smaller than the other dimension m, so the solution of (4)

still can be very efficient.

We study the numerical properties of the four algorithms algorithms sum-

marized in Table 1. Our analysis motivated mostly by the Å. Björck’s paper

[1] and the paper of Å. Björck and C.C. Paige [2] (see also [4]–[6]). Through

the paper we assume that the computed matrix C̃ in floating point arith-

metic is obtained by a backward stable algorithm. It means that there exists

exactly orthogonal matrices Û and V̂ such that

Â = A + ∆A = Û C̃V̂ T , ‖∆A‖ ≤ O(u) ‖A‖ (5)

and the computed matrix Ṽ is close to V̂ , i.e.

Ṽ = V̂ + ∆V, ‖∆V ‖ ≤ O(u). (6)

It is interesting to notice that ĈT Ĉ = V̂ T (ÂT Â)V̂ . Hence our computed

solution x̃ of (4) will be often related to the solution of the perturbed system

of normal equations ÂT Âx̂ = ÂT b.
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Algorithm I (SNEQR)

Compute the upper-triangular factor R ∈ Rn×n of Householder QR

decomposition of A: A = QR, where Q ∈ Rm×n is left orthogonal.

Don’t store Q.

Solve the seminormal equations RT Rx = AT b.

Algorithm II (SNESVD)

Find V ∈ Rn×n and Σ ∈ Rn×n of the SVD decomposition of A:

A = UΣV T , where U ∈ Rm×n is left orthogonal. Don’t store U !

Solve the seminormal equations Σ2(V T x) = V T (AT b).

Algorithm III (CSNEQR)

Solve RT Rx = AT b for x by Algorithm I.

Compute r = b− Ax.

Solve RT R∆x = AT r for ∆x (using Algorithm I).

Update xnew = x + ∆x.

Algorithm IV (CSNESVD)

Solve Σ2(V T x) = V T (AT b) for x by Algorithm II.

Compute r = b− Ax.

Solve Σ2(V T ∆x) = V T (AT r) for ∆x (using Algorithm II).

Update xnew = x + ∆x.

Table 1: Algorithms description
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The paper is organized as follows. Section 2 is devoted to the sensitiv-

ity of the least squares problem and Section 3 to the numerical stability of

algorithms for computing the least squares solution. In Section 4 we study

the numerical properties of the SNESV D method based on the SVD of A. In

this paper we consider only diagonal C, where the system (4) can be solved

very accurately, for the case when C is bidiagonal we refer to [7]. In Sec-

tion 5 we give a roundoff error analysis of the corrected seminormal equations

CSNESV D. Numerical experiments are given in Section 6. Through the pa-

per we use only the 2-norm and assume the floating point arithmetic with

machine precision u.

2. Perturbation analysis

We recall some important facts on the sensitivity of the solution x∗ = A†b

to small perturbations in A and b. Let us consider first a perturbation in the

vector b. Let x̂ = A†(b + ∆b) be the least-squares solution to the perturbed

system minx ‖(b+∆b)−Ax‖ and let us assume that ‖∆b‖ ≤ ε‖b‖. Thus, the

difference between the solution x̂ and the solution of the original problem

x∗ = A†b is equal to x̂− x∗ = A†∆b, so

‖x̂− x∗‖
‖x∗‖

≤ εκb(A, b), κb(A, b) =
‖A†‖‖b‖
‖x∗‖

, (7)

where κb(A, b) is the condition number the least squares problem with re-

spect to small perturbation in b. Since A has full column rank we have

‖b‖ ≤ ‖A‖‖x∗‖, so κb(A, b) ≤ κ(A), where κ(A) = ‖A‖ ‖A†‖ is the stan-

dard condition number of the matrix A. How does κb(A, b) compare with

κ(A)? In fact, it can be arbitrarily smaller than κ(A) for particular b. For

more details we refer to the recent paper of Dopico and Molera [8].

5



Now we consider the second case: a perturbation in the matrix A. We

recall Wedin’s results (cf. [11, pp. 49–51], [3, pp. 26–31], [9]) on the sensitivity

of the least squares solution to small perturbations in A. In this case the

augmented system approach is very helpful. Notice that the normal equations

(2) may be written as AT r∗ = 0 with r∗ = b − Ax∗. Thus we get the

augmented system for r∗ and x∗ in the form I A

AT 0

 r∗

x∗

 =

 b

0

 . (8)

The exact formula for the inverse of M is known and thus we have r∗

x∗

 =

 I − AA† (A†)T

A† −(AT A)−1

 b

0

 . (9)

Theorem 2.1. Assume that A ∈ Rm×n has a full column rank with m ≥ n

and b ∈ Rm. Let x̂ 6= 0 be the exact solution to (1) for slightly perturbed

problem minx ‖b− Âx‖, where

Â = A + ∆A, ‖∆A‖ ≤ ε‖A‖.

Let r̂ = b − Âx̂ and r∗ = b − Ax∗ be the residuals for the original and

the perturbed least squares problem. Assuming εκ(A) < 1 it follows that

rank(Â) = rank(A) = n

‖x̂− x∗‖ ≤ ε κ(A)

1− εκ(A)
(
∥∥x∗‖+ ‖A†‖‖r∗‖

)
+ εκ(A)‖x∗‖, (10)

‖r̂ − r∗‖ ≤ ε‖A‖
(
‖x∗‖+ ‖A†‖‖r∗‖

)
. (11)

Remark 2.1. We can rewrite the bound (10) as follows

‖x̂− x∗‖
‖x∗‖

≤ 2ε κLS(A, b) +O((ε κ(A))2), (12)
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where

κLS(A, b) = κ(A)

(
1 + κ(A)

‖r∗‖
‖A‖ ‖x∗‖

)
(13)

is called the condition number of the least squares problem (cf.[3, p. 31]).

Notice that κLS(A, b) ≥ κ(A) ≥ κb(A, b). The ratio κ(A) ‖r∗‖
‖A‖ ‖x∗‖ (”incom-

patibility factor”) plays an important role here. If r∗ = b − Ax∗ = 0 (i.e.

the system is compatible) then κLS(A, b) = κ(A). The situation is different

in case when this factor is large and the term proportional to κ2(A) domi-

nates in κLS(A, b). We introduce also the total condition number of the least

squares problem as a measure of the sensitivity of x∗ to small perturbations

in both A and b:

cond(A, b) = κLS(A, b) + κb(A, b). (14)

3. Numerical stability

In this paper we study the forward stability of algorithms for computing

the least squares solution. More precisely, if the approximate solution x̃

satisfies the bound

‖x̃− x∗‖ ≤ O(u) κ(A)
(
‖x∗‖+ ‖A†‖‖r∗‖

)
(15)

then we call x̃ a forward stable solution to the least squares problem (1). We

see that we can rewrite the inequality (15) as

‖x̃− x∗‖
‖x∗‖

≤ O(u) κLS(A, b). (16)

Å. Björck’s proved that the seminormal equations method based on the

backward stable QR factorization of A, i.e. RT Rx∗ = AT b, is not forward

stable (cf. [1]). More general case was considered by Björck and C.C.Paige
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(cf. [2]) for augmented systems (8). However, in [2] they indicate that if

O(u)κ2(A) < 1 then one one step of iterative refinement called as the cor-

rected seminormal equations method (CSNEQR)) produces forward stable

solution to (1) in sense of (15). In addition, it was noted in conclusions

that the CSNEQR method is not forward stable for all matrices A such that

O(u)κ(A) < 1. Our main results on SNESV D and CSNESV D in Sections 4

and 5 will be of similar type but they assume the use of the SVD decompo-

sition instead of the QR factorization of A.

In our error analysis we obtain error bounds similar to (15) but in terms

of the perturbed matrix Â = A + ∆A and the vectors x̂ and r̂ associated

with the perturbed least squares problem with Â and b. Here ‖∆A‖ ≤

O(u)‖A‖, where O(u) = c(m,n)u (c(m, n) always means a modest constant

depending on m and n here). Assume the hypothesis of Theorem 2.1 and let

the computed vector x̃ satisfies the bound

‖x̃− x̂‖ ≤ O(u)κ(Â)
(
‖x̂‖+ ‖Â†‖‖r̂‖

)
.

Notice that ‖x̃ − x∗‖ ≤ ‖x̃ − x̂‖ + ‖x̂ − x∗‖, ‖x̂‖ ≤ ‖x∗‖ + ‖x̂ − x∗‖ and

‖r̂‖ ≤ ‖r∗‖+ ‖r̂ − r∗‖. Now it is natural to use the result on the sensitivity

of the singular values. It is clear that under assumption O(u)κ(A) < 1 we

can give bounds ‖Â‖ ≤ ‖A‖+ ‖∆A‖ and ‖Â†‖ ≤ ‖A†‖
1−‖∆A‖‖A†‖ . The condition

numbers are given as κ(A) = ‖A‖‖A†‖ and κ(Â) = ‖Â‖‖Â†‖. Then we have

κ(Â) ≤ κ(A)
1 +O(u)κ(A)

1−O(u)κ(A)
.

Considering somewhat stronger assumption O(u)κ(A) � 1 and using Theo-

rem 2.1 (with ε = O(u)) we obtain the bound in terms of the matrix A and
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the vectors x∗ and r∗ associated with the original problem (1)

‖x̃− x∗‖ ≤ O(u)κ(A)
(
‖x∗‖+ ‖A†‖‖r∗‖

)
. (17)

We can rewrite the inequality (17) into the formula for relative error

‖x̃− x∗‖
‖x∗‖

≤ O(u)κLS(A, b)

indicating that x̃ is a forward stable solution to the original problem (1).

Now we explain how κb(Â, b) is related to κb(A, b). We assume that

O(u)κLS(A, b) < 1. Since x̂ = x∗ + (x̂− x∗) we can write

‖x̂‖ ≥ ‖x∗‖ − ‖x̂− x∗‖ ≥ ‖x∗‖ (1−O(u)κLS(A, b))

leading together with ‖Â‖ ≥ ‖A‖ − ‖∆A‖ to the final bound for κb(Â, b)

κb(Â, b) ≤ κb(A, b)

1−O(u)κLS(A, b)
.

4. Error analysis of Algorithm II

Lemma 4.1. Let A ∈ Rm×n has full column rank, n = rank(A) ≤ m and

b ∈ Rm. Assume that there exist orthogonal matrices Û and V̂ such that the

computed matrices Σ̃ and Ṽ satisfy

Â = A + ∆A = ÛΣ̃V̂ T , ‖∆A‖ ≤ O(u) ‖A‖ (18)

and the computed matrix Ṽ is close to V̂ , i.e.

Ṽ = V̂ + ∆V, ‖∆V ‖ ≤ O(u). (19)

Assume that rank(Â) = n and uκ(Â) < 1. Let x̂ be the exact solution to

the system ÂT Â x̂ = ÂT b. Then the computed solution x̃ in floating point

arithmetic by Algorithm II satisfies

ÂT Â (I + F )x̃ = ÂT b + e, (20)
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where

‖F‖ ≤ O(u), ‖e‖ ≤ O(u)‖Â‖‖b‖. (21)

Proof. It is easy to see that fl(AT b) = (A + E1)
T b, ‖E1‖ ≤ O(u)‖A‖ and

fl(Ṽ T fl(AT b)) = V̂ T (I+F1)(A+E1)
T b = V̂ T (A+E2)

T b, where ‖F1‖ ≤ O(u)

and ‖E2‖ ≤ O(u)‖A‖. Then there exist F2 and F3 such that Σ̃2ỹ = (I +

F2)V̂
T (A + E2)

T b = V̂ T (I + F3)(A + E2)
T b, so

Σ̃2ỹ = V̂ T (A + E3)
T b, (22)

where ‖Fi‖ ≤ O(u) for i = 2, 3 and ‖E3‖ ≤ O(u)‖A‖. We see that x̃ =

fl(Ṽ ỹ) = V̂ (I + F4)ỹ, ‖F4‖ ≤ O(u). ¿From this we obtain

ỹ = V̂ T (I + F4)
−1x̃ = V̂ T (I + F )x̃, ‖F‖ ≤ O(u). (23)

This together with (22) gives Σ̃2V̂ T (I + F )x̃ = V̂ T (A + E3)
T b, which we

rewrite as V̂ Σ̃2V̂ T (I + F )x̃ = (A + E3)
T b. Now we use the equality ÂT Â =

V̂ Σ̃2V̂ T and we see that slightly perturbed x̃ satisfies ÂT Â (I + F )x̃ =

(A+E3)
T b, which can be written in the form of (20) with e = (E3−∆A)T b.

Clearly, ‖e‖ ≤ (‖E3‖ + ‖∆A‖)‖b‖ ≤ O(u)‖A‖‖b‖. Since ‖A‖ ≤ [1 +

O(u)]‖Â‖, the bounds (21) follow immediately.

Theorem 4.1. Assuming the hypothesis of Lemma 4.1 we have

x̃− x̂ = (ÂT Â)−1e− Fx̃, x̂ = Â†b, (24)

with the following two bounds

‖x̃− x̂‖ ≤ O(u)κ(Â) ‖Â†‖‖b‖ (25)

and

‖A(x̃− x̂)‖ ≤ O(u)κ(Â) ‖b‖+O(u)‖Â‖‖x̃‖. (26)
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Proof. It is clear from (20) that x̃ − x̂ satisfies (24) with the bound ‖x̃ −

x̂‖ ≤ ‖(ÂT Â)−1‖‖e‖ + ‖F‖‖x̃‖. From (23) we have ‖F‖ ≤ O(u). Using

x̃ = (x̃− x̂) + x̂, we have

‖x̃− x̂‖ ≤ ‖(ÂT Â)−1‖‖e‖+O(u)‖x̂‖. (27)

Since x̂ = Â† b, we get ‖x̂‖ ≤ ‖Â†‖‖b‖. It is clear that ‖(ÂT Â)−1‖ = ‖Â†‖2.

¿From (21), (27) and the inequality κ(Â) ≥ 1 we obtain (25). To prove (26)

we multiply the equation (24) by Â and get A(x̃− x̂) = (Â†)T e− ÂF x̃. From

this it follows that

‖A(x̃− x̂)‖ ≤ ‖Â†‖‖e‖+O(u)‖Â‖‖x̃‖.

This together with (21) gives (25).

Remark 4.1. Note that κb(Â, b) = ‖Â†‖‖b‖
‖x̂‖ is the condition number of x̂ =

Â† b to small perturbation in b. If κb(Â, b) is of order unity, then ‖x̃−x̂‖
‖x̂‖ ≤

O(u) κ(Â) and in this case Algorithm II produces a forward stable solution

to the problem (1).

5. Error analysis of Algorithm IV

Theorem 5.1. Let x̃, r̃, ∆x̃ and x̃new be computed by Algorithm IV in float-

ing point arithmetic. Under the hypothesis of Lemma 4.1 and assuming that

O(u)κ(Â)κb(Â, b) < 1 we have

‖x̃new − x̂‖
‖x̂‖

≤ O(u)

(
κ(Â) + κb(Â, b) + κ2(Â)

‖b− Âx̂‖
‖Â‖‖x̂‖

)
. (28)
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Proof. We have x̃new = (I+D)(x̃+∆x̃) with ‖D‖ ≤ u. This gives x̃new− x̂ =

(I + D)((x̃ + ∆x̃)− x̂) + Dx̂. Hence we get the following bound

‖x̃new − x̂‖ ≤ (1 + u)‖(x̃ + ∆x̃)− x̂‖+ u‖x̂‖. (29)

All we need is to bound the term ‖(x̃ + ∆x̃)− x̂‖. By the same approach as

in Lemma 4.1 and Theorem 4.1 we obtain

∆x̃ = Â†r̃ + (ÂT Â)−1g −G∆x̃, (30)

‖G‖ ≤ O(u), ‖g‖ ≤ O(u)‖Â‖‖r̃‖. (31)

The computed residual r̃ = b− Âx̃ + f satisfies the identity

r̃ = r̂ − Â(x̃− x̂) + f, ‖f‖ ≤ O(u)(‖b‖+ ‖Â‖‖x̃‖), (32)

where r̂ = b − Âx̂. Due to Â†Â = I and Â†r̂ = 0 it follows from (32) that

Â†r̃ = −(x̃ − x̂) + Â†f and so (30) can be rewritten as ∆x̃ = −(x̃ − x̂) +

Â†f + (ÂT Â)−1g − G∆x̃. Thus, (x̃ + ∆x̃) − x̂ = Â†f + (ÂT Â)−1g − G∆x̃.

This together with the assumption ‖G‖ ≤ O(u) leads to

‖(x̃ + ∆x̃)− x̂‖ ≤ ‖Â†f‖+ ‖(ÂT Â)−1g‖+O(u)‖∆x̃‖. (33)

In order to bound ‖∆x̃‖, we write ‖∆x̃‖ ≤ ‖x̃ + ∆x̃‖ + ‖x̃‖. On the other

hand, x̃ + ∆x̃ = (I + D)−1x̃new, so ‖x̃ + ∆x̃‖ ≤ 1
1−u

‖x̃new‖, hence u‖∆x̃‖ ≤

O(u)‖x̃new‖+ u‖x̃‖. Then (33) can be further bounded as

‖(x̃ + ∆x̃)− x̂‖ ≤ ‖Â†f‖+ ‖(ÂT Â)−1g‖+O(u)‖x̃new‖+ u‖x̃‖. (34)

First we consider ‖Â†f‖. It follows from (32) that

‖Â†f‖ ≤ ‖Â†‖‖f‖ ≤ O(u)‖Â†‖‖b‖+O(u)κ(Â)‖x̃‖. (35)
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Now we want to bound ‖(ÂT Â)−1g‖. Notice that from (31) we have ‖(ÂT Â)−1g‖ ≤

‖Â†‖2‖g‖ ≤ O(u)κ(Â)‖Â†‖‖r̃‖. Due to (32) we get ‖r̃‖ ≤ ‖r̂‖ + ‖Â(x̃ −

x̂)‖ + ‖f‖. Taking into account (26), (32) and κ(Â) ≥ 1 we get ‖r̃‖ ≤

‖r̂‖+O(u)κ(Â)‖b‖+O(u)‖Â‖‖x̃‖. We conclude that

‖(ÂT Â)−1g‖ ≤ O(u)κ(Â)‖Â†‖‖r̂‖+O(u)κ(Â)‖Â†‖[‖Â(x̃− x̂)‖+‖f‖]. (36)

Since we have ‖x̃‖ ≤ ‖x̂‖+‖x̃− x̂‖ ≤ ‖x̂‖+O(u)κ(Â)‖Â†‖‖b‖ and ‖x̃new‖ ≤

‖x̂‖+‖x̃new− x̂‖, the bounds (29) together with (34), (35) and (36) give then

the statement (28).

Remark 5.1. Notice that κb(Â, b) ≤ κ(Â), so (28) can be read as follows

‖x̃new − x̂‖
‖x̂‖

≤ O(u)

(
κ(Â) + κ2(Â)

‖b− Âx̂‖
‖Â‖‖x̂‖

)
. (37)

Thus, x̃new is a forward stable solution to the least squares problem minx ‖b−

Âx‖, and under reasonable conditions also to the original least squares prob-

lem (1), see the discussion in Section 3.

6. Numerical experiments

In this section we illustrate our theoretical results. All experiments are

performed using MATLAB with unit roundoff u = 1.1 · 1016. We assume two

extreme cases, where the least squares solution x∗ is equal to right singular

vector corresponding to the smallest or to the largest singular value of the

matrix A. As it will be clear from results, the correction step is important

especially for problems with solution close (equal) to the right singular vec-

tors corresponding to the largest singular values. The first problem with
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dimensions m = 20 and n = 7 is defined by the singular value decomposition

of the matrix A = UΣV T , where U and V are orthogonal matrices with cor-

responding dimensions generated by the orthog subroutine (we consider only

the first n columns for matrix U). The matrix Σ is a diagonal matrix with

singular values given as σi(A) = 106−1.5i for i = 1, . . . , n. It is clear then that

κ(A) = 109. Thus we consider two problems with the solutions x1 and x2

given by two columns in the matrix V corresponding to two extremal singu-

lar values, respectively. This leads to the right hand side vectors b1 = Ax1

and b2 = Ax2. Finally we take vector h as the scaled n + 1-th column of

the orthogonal matrix that generates the matrix U with ‖h‖ = σn(A). It is

clear then that AT h = 0 and κLS(A, b) ≈ κ(A). The second set of problems

is defined in a similar way. The only difference is in the m = 10000, n = 500

and in the definition of the matrix Σ, where singular values are given as

σi(A) = 104.5−9(i−1)/499 for i = 1, . . . , 500. Tables 2–5 summarize our nu-

merical results. The first rows correspond to the case of the over-determined

systems Ax1 = b1 and Ax2 = b2 with the classical solutions x1 and x2. In

the subsequent rows we have increased the residual norm of the last squares

problem via the appropriate scaling of the vector h. The norms of relative

errors are scaled by cond(A, b) and thus correspond to the theoretical bound

(28). We see that SNESV D is quite satisfactory enough if the solution x1

is equal to the right singular vector corresponding to the smallest singular

value. This is no longer true for the solution x2 equal to the right singular

vector corresponding to the norm of A. In this case the refinement step in the

CSNESV D method can significantly improve the accuracy of the computed

solution. In addition our problems still meet the assumptions of Theorem
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b cond(A, b) κb(A, b) ‖x̃−x1‖
‖x1‖∗cond(A,b)

‖x̃new−x1‖
‖x1‖∗cond(A,b)

b1 2.0000e+09 1.0000e+09 5.9605e-08 3.3112e-15

b1 + h 3.0000e+09 1.0000e+09 3.9737e-08 1.1983e-15

b1 + 101 · h 1.2000e+10 1.0000e+09 9.9341e-09 4.6631e-16

b1 + 102 · h 1.0200e+11 1.0000e+09 1.1687e-09 9.5519e-17

b1 + 103 · h 1.0020e+12 1.0000e+09 1.1897e-10 3.4409e-17

b1 + 104 · h 1.0002e+13 1.0000e+09 1.7878e-11 2.5554e-17

b1 + 105 · h 1.0000e+14 1.0000e+09 1.1921e-12 4.5836e-17

b1 + 106 · h 1.0000e+15 1.0000e+09 1.1921e-13 3.7842e-17

b1 + 107 · h 1.0000e+16 1.0000e+09 1.1921e-14 5.1597e-17

Table 2: Results for the least squares problem with m = 20 and n = 7.

5.1 and so the method computes forward stable approximate solutions.

7. Conclusions

In this paper we have considered two methods for solution the least

squares problems which are based only on the factors Σ and V from the

SVD decomposition of the matrix A. We have shown that while SNESV D

method based on the solution of the system (4) is not forward stable, one

step of fixed precision iterative refinement in CSNESV D improves the ac-

curacy of the computed approximate solution. We have shown that under

the condition O(u)κ(A)κb(A, b) < 1 this method produces a forward stable

solution, while it is not difficult to construct a numerically nonsingular ex-

ample (satisfying O(u)κ(A) < 1) for which the CSNESV D method fails in

computing the forward stable solution.
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b cond(A, b) κb(A, b) ‖x̃−x2‖
‖x2‖∗cond(A,b)

‖x̃new−x2‖
‖x2‖∗cond(A,b)

b2 1.0000e+09 1.0000e+00 4.6511e-17 1.5901e-18

b2 + h 2.0000e+09 1.4142e+00 5.0153e-17 1.5554e-17

b2 + 101 · h 1.1000e+10 1.0050e+01 1.9985e-17 3.3175e-17

b2 + 102 · h 1.0100e+11 1.0000e+02 1.4897e-17 3.4555e-17

b2 + 103 · h 1.0010e+12 1.0000e+03 2.1718e-17 9.4127e-18

b2 + 104 · h 1.0001e+13 1.0000e+04 4.6702e-17 2.5224e-17

b2 + 105 · h 1.0000e+14 1.0000e+05 1.1828e-17 2.4759e-17

b2 + 106 · h 1.0000e+15 1.0000e+06 3.2526e-17 7.1239e-18

b2 + 107 · h 1.0000e+16 1.0000e+07 4.2960e-17 4.2055e-17

Table 3: Results for the least squares problem with m = 20 and n = 7.

b cond(A, b) κb(A, b) ‖x̃−x1‖
‖x1‖∗cond(A,b)

‖x̃−x1‖
‖x1‖∗cond(A,b)

b1 2.0000e+09 1.0000e+09 1.3146e-07 4.2228e-15

b1 + h 3.0000e+09 1.0000e+09 7.4301e-08 3.2382e-15

b1 + 101 · h 1.2000e+10 1.0000e+09 1.4348e-08 6.9681e-16

b1 + 102 · h 1.0200e+11 1.0000e+09 2.5637e-09 9.4715e-17

b1 + 103 · h 1.0020e+12 1.0000e+09 1.9640e-10 9.2667e-18

b1 + 104 · h 1.0002e+13 1.0000e+09 3.0798e-11 6.2056e-18

b1 + 105 · h 1.0000e+14 1.0000e+09 2.0705e-12 2.2348e-17

b1 + 106 · h 1.0000e+15 1.0000e+09 2.0001e-13 1.0037e-17

b1 + 107 · h 1.0000e+16 1.0000e+09 2.2046e-14 1.6284e-18

Table 4: Results for the least squares problem with m = 10000 and n = 500.
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b cond(A, b) κb(A, b) ‖x̃−x2‖
‖x2‖∗cond(A,b)

‖x̃new−x2‖
‖x2‖∗cond(A,b)

b2 1.0000e+09 1.0000e+00 2.1639e-17 4.4147e-19

b2 + h 2.0000e+09 1.4142e+00 1.1273e-17 3.0412e-18

b2 + 101 · h 1.1000e+10 1.0050e+01 4.1139e-18 8.0375e-18

b2 + 102 · h 1.0100e+11 1.0001e+02 4.9674e-18 5.2661e-18

b2 + 103 · h 1.0010e+12 1.0000e+03 1.3189e-17 8.7706e-18

b2 + 104 · h 1.0001e+13 1.0000e+04 1.2039e-17 1.3397e-17

b2 + 105 · h 1.0000e+14 1.0000e+05 4.7011e-18 4.4827e-18

b2 + 106 · h 1.0000e+15 1.0000e+06 3.4720e-18 7.7549e-18

b2 + 107 · h 1.0000e+16 1.0000e+07 7.5257e-18 6.8175e-18

Table 5: Results for the least squares problem with m = 10000 and n = 500.
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[5] Å. Björck, Iterative refinement of linear least squares solutions II, BIT

8 (1968) 8–30.
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