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Abstract

In the early days of the computer it was believed that the Lanczos method is of no practical
use for solving algebraic Hermitian eigenvalue problems. The observed rapid loss of orthogonality
between basis vectors in finite precision prevents the method, in general, from finding an acceptable
approximation of the spectrum. The opinion on the value of the Lanczos method for practice
changed with the appearance of the PhD thesis of Paige [8], who recommended its use for efficient
approximation of only a few eigenvalues of a large sparse matrix. Paige showed not only that loss of
orthogonality poses no problem for evaluating the quality of computed eigenvalue approximations
(Ritz values), but that, on the contrary, convergence of Ritz values goes hand in hand with loss
of orthogonality (see [8], or also [7]). An important result needed to prove this is the persistence
theorem, which states that once a Ritz value θ is at a certain distance δ from an eigenvalue,
all Lanczos iterations to come will produce a Ritz value at a distance of at most δ from θ. In
the terminology of [8], the Ritz value θ is stabilized to within δ. The persistence theorem is a
consequence, among others, of the fact that Ritz values produced at subsequent Lanczos iterations
interlace, i.e. between every pair of Ritz values there lies a Ritz value of the previous iteration.

Generalizations of the Lanczos method for non-Hermitian matrices basically consist of two classes of
methods. Methods of the Bi-Lanczos type exploit short recurrences to build a pair of bi-orthogonal
bases for the involved Krylov subspaces and Arnoldi type methods compute a single, in exact
arithmetics orthogonal, basis with long recurrences. Methods of both classes are nowadays widely
used for the solution of large sparse eigenvalue problems, especially block or band variants in
combination with a robust deflation strategy. Because of the long recurrences, Arnoldi methods
are in practice restarted; a popular restart strategy is implicit restarting [11], which is the main
feature of one of the most efficient software packages for large non-Hermitian eigenvalue problems,
ARPACK [5].

Recent convergence results of the Arnoldi method focus on properties of restarted versions, in
particular versions using implicit restarts [2]. In this talk we are interested in more basic, theoretical
properties of the unrestarted Arnoldi method. We are mainly motivated by the questions: Seen
the ability of the Arnoldi method to find accurate approximations of eigenvalues for a large variety
of problems, can a result on stabilization of Ritz values as in the Lanczos method be proven? If
not so, what is the worst behavior one can expect from the Arnoldi method?

For the Lanczos method, the worst behavior was described by Scott in [9]. Given a Hermitian
matrix of order n with the eigenvalues λ1 < λ2 < . . . < λn, he constructed a perverse starting
vector v such that the Ritz values at the last Lanczos iteration are
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That is, convergence is postponed until the very last iteration and the final Ritz values are as
far from the eigenvalues as can be allowed by the interlacing property. For the formulation of an
analogue of this result for the Arnoldi method one first has to find a generalized interlacing property
for the non-Hermitian case. Some work on this topic has been done by both numerical analysts
and scientists from other area’s like Lie Algebra, see e.g. [10, 6]; in [6] one finds a geometrical
interpretation of an interlacing property for the Ritz values generated with normal matrices. This
interlacing property can be generalized to diagonalizable matrices with considerable effort but the
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general case poses serious difficulties. We will explain this briefly in our talk and then we present
our main result: Given any set of complex numbers
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there exists a whole class of matrices with starting vectors such that when the Arnoldi method

is applied to members of the class, it generates at the kth iteration the Ritz values θ
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k ,

k = 1, . . . , n. In addition, we show how to construct such matrices and starting vectors by giving
a full parametrization of the class that generates n(n+ 1)/2 prescribed Ritz values.

Thus we have shown that the Arnoldi method can exhibit arbitrary convergence behavior. As a
consequence, a persistence theorem is not possible for the Arnoldi method and no stabilization of
Ritz values can be guaranteed. It also follows that there is no interlacing property for the Ritz values
generated by general non-Hermitian matrices. Our result is similar in spirit to the results of Arioli,
Greenbaum, Pták and Strakoš showing that the GMRES method can generate any convergence
curve with any spectrum [4, 3, 1]. While the GMRES method is closely related to the Arnoldi
method, one may suspect our result to be a straightforward consequence of [4, 3, 1]. This is not
the case, although we do exploit the theory developed in [4, 3, 1]. In fact, our result implies that
GMRES can generate a prescribed convergence curve not only with any spectrum but even with
any distribution of the n(n+1)/2 Ritz values produced during the iterative process, except for one
Ritz value at each iteration.
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