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Abstract

One of the most important and frequently used preconditioning techniques for solving symmetric
positive definite systems Ax = b is based on computing the approximate inverse factorization in the
form A−1 = ZZT , where Z is upper triangular [1]. It is also a well-known fact that the factor Z can
be computed column by column by means of the of an A-orthogonalization process applied to the
unit basis vectors e1, . . . , en. As noted in [3] such A-orthogonalization also produces the Cholesky
factor of the matrix A = UTU where U−1 = Z. This fact has been exploited to construct efficient
sparse approximate approximate inverse preconditioners [1, 2, 3]. In a more general setting, given
the symmetric positive definite matrix A and the nonsingular matrix Z(0), we look for the factors
Z and U so that Z(0) = ZU with ZTAZ = I and the upper triangular U is a Cholesky factor of
the matrix (Z(0))TAZ(0) = UTU .

There are several ways how to compute the matrices Z and U . If we have the spectral de-
composition A = V ΛV T , the factor U can be obtained from the standard QR decomposition
Λ1/2V TZ(0) = QU . The factor Z can be then recovered as Z = V Λ−1/2Q. Probably the most
straightforward and frequently used approach is the Gram-Schmidt orthogonalization, which con-
secutively A-orthogonalizes the columns of Z(0) against previously computed vectors using the
orthogonalization coefficients that form the factor U . In the classical Gram-Schmidt algorithm
(CGS), the A-orthogonal vectors are computed via matrix-vector updates which are relatively easy
to parallelize. The rearrangement of this scheme has led to the modified Gram-Schmidt algorithm
(MGS) with better numerical properties. Introducing sequential orthogonalization however de-
stroys desirable parallel properties of the algorithm. We will discuss also yet another variant of
sequential orthogonalization, which is motivated originally by the AINV preconditioner and which
uses oblique projections [3]. We will refer to this scheme as the AINV orthogonalization. The main
motivation for the development of approximate inverse techniques came from parallel processing
and so the early papers on inverse factorization did not study numerical properties of algorithms.
However, concerns on robustness and accuracy became very quickly an important aspect and re-
sulted into a significant progress in recent preconditioning techniques. While the initial schemes
like the basic AINV algorithm were based on oblique projections or on the CGS orthogonaliza-
tion [3], the development lead to their stabilization both in terms of the orthogonalization scheme
(MGS in the SAINV algorithm [2]) and in terms of appropriate computation of diagonal entries in
U (one-sided versus stabilized versions of AINV [2, 3]).

From a numerical point of view, all these techniques may produce vectors which are far from
orthogonal. The orthogonality between computed vectors is however crucial for the quality of the
preconditioner constructed in the approximate inverse factorization. Given some approximation
Z̄ to Z such that A−1 ≈ Z̄Z̄T , we are especially interested in the loss of orthogonality between
the columns of Z̄ measured by the 2-norm of the matrix Z̄TAZ̄ − I. It is a well-known fact
that eigenvalues of Z̄TAZ̄ determine the convergence rate of the preconditioned conjugate gradient
method applied to Z̄TAZ̄y = Z̄T b where x = Z̄y. Therefore the orthogonal basis problem is of a
primary interest for this application. While for the case of the standard inner product there exists
a complete rounding error analysis for all main orthogonalization schemes [4, 7], the numerical
properties of the schemes with a non-standard inner product are much less understood.
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In this contribution we review the most important schemes used for orthogonalization with respect
to the non-standard inner product and give the worst-case bounds for corresponding quantities
computed in finite precision arithmetic. We formulate our results on the loss of orthogonality and
on the factorization error (measured by ‖Z̄TAZ̄ − I‖ and ‖Z(0) − Z̄Ū‖) in terms of quantities
proportional to the roundoff unit u, in terms of the condition number κ(A) which represents an
upper bound for the relative error in computing the A-inner product as well as the condition number
of the matrix A1/2Z(0) which plays an important role in the factorization (Z(0))TAZ(0) ≈ ŪT Ū .

Although all orthogonalization schemes are mathematically equivalent, their numerical behavior
can be significantly different. It follows from our analysis that while the factorization error is quite
comparable for all these schemes, the orthogonality between computed vectors can be significantly
lost and it depends on the condition number κ(A). This is the case also for the eigenvalue-based
(EIG) implementation and Gram-Schmidt with reorthogonalization (CGS2). The classical Gram-
Schmidt algorithm and AINV orthogonalization behave very similarly and generate vectors with the
orthogonality that besides κ(A) depends also on the factor κ(A1/2Z(0))κ(Z(0)) (it essentially means
the quadratic dependence on the condition number of the matrix A1/2Z(0)). Since the orthogonality
in the modified Gram-Schmidt algorithm depends only linearly on κ(A1/2Z(0)), MGS appears to be
a good compromise between expensive EIG or CGS2 and less accurate CGS or AINV. Indeed in the
context of approximate inverse preconditioning the stabilization of AINV has lead to the SAINV
algorithm which uses exactly the MGS orthogonalization. We treat separately the particular case
of a diagonal A which is extremely useful in the context of weighted least squares problems. One
can show then that local errors arising in the computation of a non-standard inner product do not
play an important role here and that the numerical behavior of these schemes is almost identical
to the behavior of the orthogonalization schemes with the standard inner product. For all these
results we refer to [6]. We believe that these results are an initial step towards understanding the
behavior of practical strategies in approximate inverse preconditioning and will stimulate further
research of schemes that use some inexact orthogonalization with appropriate dropping criterion
and lead to some sparse approximation of Z and U . For a survey of such preconditioning techniques
we refer to [1].
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