
The Golub-Kahan Iterative Bidiagonalization in Regularization of Ill-posed
problems and Estimation of the Noise in the Data
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Abstract

A broad class of applications requires solving linear ill-posed approximation problems of the form

Ax ≈ b

with a right-hand side b (observation vector) contaminated by noise. The matrix A often repre-
sents a discretized smoothing operator (such as a discretized blurring operator in image deblurring
problems) with the singular values of A decaying gradually without a noticeable gap; A is usu-
ally ill-conditioned. The presence of the noise causes additional difficulties; the direct solution
A+x, where A+ denotes a matrix pseudoinverse, represents usually a meaningless noise-dominated
solution. Therefore regularization methods are used for finding numerical approximations to the
solution which reflect a sufficient amount of information contained in the data, while suppressing
the devastating influence of the noise.

The Golub-Kahan iterative bidiagonalization belongs among popular techniques with regularization
properties. Here the original problem is projected onto a lower dimensional (Krylov) subspace,
which in fact represents a form of regularization by projection. The projected problem, however,
inherits a part of the ill-posedness of the original problem, and therefore some inner regularization
must be applied [5]. Stopping criteria for the whole process are usually based on the regularization
of the projected (small) problem. Regularization parameters are typically determined by L-curve
techniques, estimation of the distance between the exact and regularized solution, the discrepancy
principle, cross validation methods (see, e.g., [1, Chap. 7, pp. 175–208] and [6] for comparison of
these methods).

In this contribution we restrict ourselves to ill-posed problems where the right-hand side b is con-
taminated by white noise

b = bexact + bnoise

with the unknown noise level; we only assume ‖bnoise‖ ¿ ‖bexact‖ . By the nature of the problem
we can assume that multiplication of a vector v by A and AT results in smoothing which reduces
the relative sizes of the high frequency components in v. In addition we assume that (on average)
the left singular vectors uj of A represent increasing frequencies as j increases and the linear system
satisfies the discrete Picard condition, i.e., the absolute value of the projections of the exact right-
hand side bexact to the left singular subspaces of A decays (on average) faster than the corresponding
singular values. All given assumptions are natural for a broad class of ill-posed problems.

Based on the assumptions given above, it was shown in [4] how the noise contained in the right-
hand side b is propagated to the projected problem in the Golub-Kahan iterative bidiagonalization.
Similar ideas are used in [7, 8, 3] for selection of a value of the regularization parameter for which
the residual vector changes from being dominated by the remaining signal to being white-noise like.
This leads to a parameter-choice method based on Fourier analysis of residual vectors. The noise
propagation to reconstructed images computed by regularizing iterations is studied in [2].

In [4], information about the noise propagation is further used for estimating the unknown noise
level in the data from the information available during the bidiagonalization process. The noise
level detection is connected with the Gauss quadrature approximation of the Rieman-Stieltjes
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distribution function determined by the input data. The presented estimate is then based on
monitoring the absolute value of the first component of the left singular vector of the bidiagonal
matrix corresponding to its smallest singular value. It can be computed at a negligible cost. Its
accuracy and robustness is investigated using various test problems.

After reviewing the results presented in [4], we turn into the problem of approximating the un-
known noise vector bnoise. Such information could further be used for improving accuracy of a
regularized solution and construction of efficient stopping criteria for the Golub-Kahan iterative
bidiagonalization. The work is in progress.
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