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Simple numerical experiment

Solve Ax = b by the CG method
A ... 25 x 25 diagonal and positive definite matrix, b = ones(1,...,1)

‘ ‘ ‘ @ 20 iterations of CG in exact
—e—exact arithmetic ’, arithmetic
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Simple numerical experiment

Solve Ax = b by the CG method
A ... 25 x 25 diagonal and positive definite matrix, b = ones(1,...,1)
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@ 29 iterations of FP CG for
the same level of accuracy

[X — Xa0]||a = 2.0057 x 10~°
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Simple numerical experiment
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@ 20 iterations of CG in exact
arithmetic

X — X20|a = 2.0611 x 10~°

@ 29 iterations of FP CG for
the same level of accuracy

[X — Xa0]||a = 2.0057 x 10~°

@ ||X20 — X29]|cc = 1.304 x 10~/
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The essence of the CG method I.

Ax =b, AeFV*NHPD matrix, beF" whereF is C or R
Hestenes, Stiefel (1952), Lanczos (1952)
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The essence of the CG method I.

Ax =b, AeFV*NHPD matrix, beF" whereF is C or R
Hestenes, Stiefel (1952), Lanczos (1952)

@ CG is a projection method which minimizes the energy norm of the error

Xk € Xo + Kk(A,r0), 1« LKk(Ar), k=1,2,...
where Ky (A, rg) = span{rg, Arg, A’rg, ..., A* 1y}

% = xilla =min{lix —yfa: y €xo + Ki(A o)}
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The essence of the CG method I.

Ax =b, AeFV*NHPD matrix, beF" whereF is C or R
Hestenes, Stiefel (1952), Lanczos (1952)

@ CG is a projection method which minimizes the energy norm of the error

Xk € Xo + Kk(A,r0), 1« LKk(Ar), k=1,2,...
where Ky (A, rg) = span{rg, Arg, A’rg, ..., A* 1y}

% = Xk[la =min{lIx —ylla: y €xo + Ki(A,10)}

@ CG is conforming with the Galerkin approximation

k
IV(u = uf)IP = 190w = un)I? + lIx =2
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The essence of the CG method II.

@ CG method is mathematically equivalent to the Lanczos process:
AVi = Vi Tk + Sks1Vka€p  with given vy = ro/||rol|

@ The CG approximations xx are given by
Tuyk = |[rolle1, Xk = Xo + ViYk.

@ Jacobi matrix Ty is the k x k matrix representation of the OG projected
operator
A = Vka*AVka* s Kk (A, I’o) — Kk (A7 ro).
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The essence of the CG method II.

@ CG method is mathematically equivalent to the Lanczos process:
AV, =V Ty + Skp1Vis1€p  with given vy =ro/||ro|

@ The CG approximations xx are given by
Tuyk = |[rolle1, Xk = Xo + ViYk.

@ Jacobi matrix Ty is the k x k matrix representation of the OG projected
operator
A = Vka*AVka* s Kk (A, I’o) — Kk (A7 ro).

@ CG is a matrix formulation of the Gauss-Christoffel quadrature

A.1o/ Il ¢ 5 w(\), / F(0) dw())
JO
T first 2k moments matched T
Tk, €1 < > w®(N), Zikzl wi(k)f()‘i(k))
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CG in FP arithmetic

Delay of convergence

Short recurrences = loss of orthogonality = delay of convergence

relative A—norm of the error
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CG in FP arithmetic

Scheme of backward-like analysis

Paige (1971, 1980), Greenbaum (1989), S (1991), Greenbaum and S (1992)

FNGK)

A, FP Lanczos — T,
: A(k), EXACT Lanczos — Ty

the first k steps

@ Eigenvalues of K(k) are tightly clustered around the eigenvalues of A.

@ In numerical experiments, K(k) can be replaced (with small inaccuracy)
by an “universal” A with sufficiently many eigenvalues in the tight clusters
around the eigenvalues of A.
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CG in FP arithmetic

lllustration of backward-like analysis
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X = Xilla ~ X — X2

We can relate k-th iteration of finite precision CG applied on A with k-th
iteration of exact CG applied on blurred problem A.
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Rank-deficiency and delay of convergence

FP CG convergence curve shifted correspondingly to the rank-deficiency of
the computed Krylov subspace gives the exact CG convergence curve.
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@ Rank deficiency: k — k, where k = rank(Ky (A, ro)) is the numerical rank
of the computed Krylov subspace.
@ Threshold: 10! (correspondence to a significant loss of orthogonality)
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Trajectory of CG approximations

Comparison of approximations

We can compare FP and exact CG approximations Xy and x; themselves,

both Xy, xi € FN.
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Observation
X — Xi
IR = Xelloe g
X = Xglloo

i.e., distance between
approximations is small
in comparison with the
actual level of error.
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Trajectory of CG approximations

Comparison of approximations

@ exact computation
o finite precision computation

]FN

Xo

Ax =b

delay at the k-th step

@ exact computation
o finite precision computation

]FN

Finite precision CG computation tightly follows the trajectory of exact CG
computations with the delay which is given by the rank-deficiency of the

computed Krylov subspace.
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Comparison of numerical ranks

@ Kk (A, ro): k-th Krylov subspace generated by FP CG
@ (A, 1o): k-th Krylov subspace generated by exact CG
(rank(Kg (A, 10)) = k)

k 56 80 100 196 362 528 611 664

k = rank(Ky (A, o)) 56 73 80 93 112 126 131 132
rank(Kx (A, r0) UKg(A,r0)) 56 74 80 93 113 127 131 132

Bcsstk04 (from Mat ri xMar ket )
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Distance between subspaces

@ Principal angles between k-dimensional subspace Kg (A, ro) and the
k-dimensional restriction of the subspace Ky (A, ro) which corresponds to
its numerical rank:

Ogelgggggeggﬂ/z

@ Distance:
distance ( Ky (A, ro), restricted ( Ky (A, ro)) ) = sin(6g)
0
10 —sin(f};) = distance i
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k - dimension of the corresponding subspaces
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Concluding remarks and future work

@ The rate of convergence typically substantially differs for FP and exact
CG. However, the trajectories of FP and exact CG approximations seem
to be very close to each other.

@ Inertia of computed Krylov subspaces represents phenomenon which
needs to be studied.
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