Tracking the trajectory in finite precision CG computations

Tomáš Gergelits ${ }^{1}$ Zdeněk Strakoš ${ }^{1,2}$
${ }^{1}$ Faculty of Mathematics and Physics, Charles University in Prague
${ }^{2}$ Institute of Computer Science AS CR

Seminar on Numerical Analysis 2014

Nymburk, 28 ${ }^{\text {th }}$ January 2014

Contents

(9) Introduction
(2) The essence of the CG method
(3) CG in finite precision arithmetic
4) Trajectory of CG approximations
(5) Inertia of computed Krylov subspaces

Contents

(1) Introduction

(2) The essence of the CG method
(3) CG in finite precision arithmetic
4. Trajectory of CG approximations
(5) Inertia of computed Krylov subspaces

Simple numerical experiment

Solve $A x=b$ by the CG method

$A \ldots 25 \times 25$ diagonal and positive definite matrix, $b=\operatorname{ones}(1, \ldots, 1)$

- 20 iterations of CG in exact arithmetic

$$
\left\|x-x_{20}\right\|_{A}=2.0611 \times 10^{-6}
$$

- 20 iterations of CG in finite precision arithmetic (FP CG)

Simple numerical experiment

Solve $A x=b$ by the CG method

$A \ldots 25 \times 25$ diagonal and positive definite matrix, $b=\operatorname{ones}(1, \ldots, 1)$

- 20 iterations of CG in exact arithmetic

$$
\left\|x-x_{20}\right\|_{A}=2.0611 \times 10^{-6}
$$

- 20 iterations of CG in finite precision arithmetic (FP CG)

$$
\left\|x-\bar{x}_{20}\right\|_{A}=1.0953 \times 10^{-2}
$$

Simple numerical experiment

Solve $A x=b$ by the CG method

$A \ldots 25 \times 25$ diagonal and positive definite matrix, $b=\operatorname{ones}(1, \ldots, 1)$

- 20 iterations of CG in exact arithmetic

$$
\left\|x-x_{20}\right\|_{A}=2.0611 \times 10^{-6}
$$

- 20 iterations of CG in finite precision arithmetic (FP CG)

$$
\left\|x-\bar{x}_{20}\right\|_{A}=1.0953 \times 10^{-2}
$$

- $\left\|x_{20}-\bar{x}_{20}\right\|_{\infty}=1.424 \times 10^{-2}$

Simple numerical experiment

Solve $A x=b$ by the CG method

$A \ldots 25 \times 25$ diagonal and positive definite matrix, $b=\operatorname{ones}(1, \ldots, 1)$

- 20 iterations of CG in exact arithmetic

$$
\left\|x-x_{20}\right\|_{A}=2.0611 \times 10^{-6}
$$

- 29 iterations of FP CG for the same level of accuracy

$$
\left\|x-\bar{x}_{29}\right\|_{A}=2.0057 \times 10^{-6}
$$

Simple numerical experiment

Solve $A x=b$ by the CG method

$A \ldots 25 \times 25$ diagonal and positive definite matrix, $b=\operatorname{ones}(1, \ldots, 1)$

- 20 iterations of CG in exact arithmetic

$$
\left\|x-x_{20}\right\|_{A}=2.0611 \times 10^{-6}
$$

- 29 iterations of FP CG for the same level of accuracy

$$
\left\|x-\bar{x}_{29}\right\|_{A}=2.0057 \times 10^{-6}
$$

- $\left\|x_{20}-\bar{x}_{29}\right\|_{\infty}=1.304 \times 10^{-7}$

Contents

(1) Introduction

(2) The essence of the CG method
(3) CG in finite precision arithmetic
4) Trajectory of CG approximations
(5) Inertia of computed Krylov subspaces

The essence of the CG method I.

$$
\begin{array}{r}
A x=b, \quad A \in \mathbb{F}^{N \times N} \text { HPD matrix, } \quad b \in \mathbb{F}^{N} \quad \text { where } \mathbb{F} \text { is } \mathbb{C} \text { or } \mathbb{R} \\
\text { Hestenes, Stiefel (1952), Lanczos (1952) }
\end{array}
$$

- CG is a projection method which minimizes the energy norm of the error
$x_{k} \in x_{0}+\mathcal{K}_{k}\left(A, r_{0}\right), \quad r_{k} \perp K_{k}\left(A, r_{0}\right), \quad k=1,2$,
where $\mathcal{K}_{k}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{k-1} r_{0}\right\}$
$\left\|x-x_{k}\right\|_{A}=\min \left\{\|x-y\|_{A}: y \in x_{0}+\mathcal{K}_{k}\left(A, r_{0}\right)\right\}$
- CG is conforming with the Galerkin approximation

$$
\left\|\nabla\left(\mathbf{u}-\mathbf{u}_{h}^{(k)}\right)\right\|^{2}=\left\|\nabla\left(\mathbf{u}-\mathbf{u}_{h}\right)\right\|^{2}+\left\|x-x_{k}\right\|_{A}^{2}
$$

The essence of the CG method I.

$$
\begin{array}{r}
A x=b, \quad A \in \mathbb{F}^{N \times N} \text { HPD matrix, } \quad b \in \mathbb{F}^{N} \quad \text { where } \mathbb{F} \text { is } \mathbb{C} \text { or } \mathbb{R} \\
\text { Hestenes, Stiefel (1952), Lanczos (1952) }
\end{array}
$$

- CG is a projection method which minimizes the energy norm of the error

$$
\begin{aligned}
& x_{k} \in x_{0}+\mathcal{K}_{k}\left(A, r_{0}\right), \quad r_{k} \perp \mathcal{K}_{k}\left(A, r_{0}\right), \quad k=1,2, \ldots \\
& \quad \text { where } \quad \mathcal{K}_{k}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{k-1} r_{0}\right\} \\
& \left\|x-x_{k}\right\|_{A}=\min \left\{\|x-y\|_{A}: \quad y \in x_{0}+\mathcal{K}_{k}\left(A, r_{0}\right)\right\}
\end{aligned}
$$

- CG is conforming with the Galerkin approximation

$$
\left\|\nabla\left(\mathrm{u}-\mathrm{u}_{h}^{(k)}\right)\right\|^{2}=\left\|\nabla\left(\mathrm{u}-\mathrm{u}_{h}\right)\right\|^{2}+\left\|x-x_{k}\right\|_{A}^{2}
$$

The essence of the CG method I.

$$
\begin{array}{r}
A x=b, \quad A \in \mathbb{F}^{N \times N} \text { HPD matrix, } \quad b \in \mathbb{F}^{N} \quad \text { where } \mathbb{F} \text { is } \mathbb{C} \text { or } \mathbb{R} \\
\text { Hestenes, Stiefel (1952), Lanczos (1952) }
\end{array}
$$

- CG is a projection method which minimizes the energy norm of the error

$$
\begin{aligned}
& x_{k} \in x_{0}+\mathcal{K}_{k}\left(A, r_{0}\right), \quad r_{k} \perp \mathcal{K}_{k}\left(A, r_{0}\right), \quad k=1,2, \ldots \\
& \quad \text { where } \quad \mathcal{K}_{k}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{k-1} r_{0}\right\} \\
& \left\|x-x_{k}\right\|_{A}=\min \left\{\|x-y\|_{A}: \quad y \in x_{0}+\mathcal{K}_{k}\left(A, r_{0}\right)\right\}
\end{aligned}
$$

- CG is conforming with the Galerkin approximation

$$
\left\|\nabla\left(\mathbf{u}-\mathbf{u}_{h}^{(k)}\right)\right\|^{2}=\left\|\nabla\left(\mathbf{u}-\mathbf{u}_{h}\right)\right\|^{2}+\left\|x-x_{k}\right\|_{A}^{2}
$$

The essence of the CG method II.

- CG method is mathematically equivalent to the Lanczos process:

$$
A V_{k}=V_{k} T_{k}+\delta_{k+1} v_{k+1} e_{k}^{T} \quad \text { with given } \quad v_{1}=r_{0} /\left\|r_{0}\right\|
$$

- The CG approximations x_{k} are given by

$$
T_{k} y_{k}=\left\|r_{0}\right\| e_{1}, \quad x_{k}=x_{0}+V_{k} y_{k} .
$$

- Jacobi matrix T_{k} is the $k \times k$ matrix representation of the OG projected operator

$$
A_{k} \equiv V_{k} V_{k}^{*} A V_{k} V_{k}^{*}: \mathcal{K}_{k}\left(A, r_{0}\right) \rightarrow \mathcal{K}_{k}\left(A, r_{0}\right)
$$

- CG is a matrix formulation of the Gauss-Christoffel quadrature

The essence of the CG method II.

- CG method is mathematically equivalent to the Lanczos process:

$$
A V_{k}=V_{k} T_{k}+\delta_{k+1} V_{k+1} e_{k}^{T} \quad \text { with given } \quad v_{1}=r_{0} /\left\|r_{0}\right\|
$$

- The CG approximations x_{k} are given by

$$
T_{k} y_{k}=\left\|r_{0}\right\| e_{1}, \quad x_{k}=x_{0}+V_{k} y_{k} .
$$

- Jacobi matrix T_{k} is the $k \times k$ matrix representation of the OG projected operator

$$
A_{k} \equiv V_{k} V_{k}^{*} A V_{k} V_{k}^{*}: \mathcal{K}_{k}\left(A, r_{0}\right) \rightarrow \mathcal{K}_{k}\left(A, r_{0}\right)
$$

- CG is a matrix formulation of the Gauss-Christoffel quadrature

A, $r_{0} /\left\|r_{0}\right\|$

$$
\omega(\lambda), \int_{0}^{\infty} f(\lambda) d \omega(\lambda)
$$

$$
\omega^{(k)}(\lambda), \sum_{i=1}^{k} \omega_{i}^{(k)} f\left(\lambda_{i}^{(k)}\right)
$$

Contents

(1) Introduction

(2) The essence of the CG method
(3) CG in finite precision arithmetic
4) Trajectory of CG approximations
(5) Inertia of computed Krylov subspaces

Delay of convergence

Short recurrences \Longrightarrow loss of orthogonality \Longrightarrow delay of convergence

Scheme of backward-like analysis

Paige (1971, 1980), Greenbaum (1989), S (1991), Greenbaum and S (1992)

- Eigenvalues of $\widehat{A}(k)$ are tightly clustered around the eigenvalues of A.
- In numerical experiments, $\widehat{A}(k)$ can be replaced (with small inaccuracy) by an "universal" \hat{A} with sufficiently many eigenvalues in the tight clusters around the eigenvalues of A.

Illustration of backward-like analysis

$$
\left\|x-\bar{x}_{k}\right\|_{A} \approx\left\|\widehat{x}-\widehat{x}_{k}\right\|_{\widehat{A}}
$$

We can relate k-th iteration of finite precision CG applied on A with k-th iteration of exact CG applied on blurred problem \widehat{A}.

Contents

(1) Introduction

(2) The essence of the CG method

(3) CG in finite precision arithmetic

(4) Trajectory of CG approximations
(5) Inertia of computed Krylov subspaces

Rank-deficiency and delay of convergence

FP CG convergence curve shifted correspondingly to the rank-deficiency of the computed Krylov subspace gives the exact CG convergence curve.

- Rank deficiency: $k-\bar{k}$, where $\bar{k}=\operatorname{rank}\left(\mathcal{K}_{k}\left(A, r_{0}\right)\right)$ is the numerical rank of the computed Krylov subspace.
- Threshold: 10^{-1} (correspondence to a significant loss of orthogonality)

Comparison of approximations

We can compare FP and exact CG approximations \bar{x}_{k} and $x_{\bar{k}}$ themselves, both $\bar{x}_{k}, x_{\bar{k}} \in \mathbb{F}^{N}$.

Observation

$$
\frac{\left\|\bar{x}_{k}-x_{\bar{k}}\right\|_{\infty}}{\left\|x-x_{\bar{k}}\right\|_{\infty}} \ll 1
$$

i.e., distance between approximations is small in comparison with the actual level of error.

Comparison of approximations

Finite precision CG computation tightly follows the trajectory of exact CG computations with the delay which is given by the rank-deficiency of the computed Krylov subspace.

Contents

(1) Introduction

(2) The essence of the CG method
(3) CG in finite precision arithmetic
(4) Trajectory of CG approximations
(5) Inertia of computed Krylov subspaces

Comparison of numerical ranks

- $\overline{\mathcal{K}}_{k}\left(A, r_{0}\right): k$-th Krylov subspace generated by FP CG
- $\mathcal{K}_{\bar{k}}\left(A, r_{0}\right): \bar{k}$-th Krylov subspace generated by exact $C G$
$\left(\operatorname{rank}\left(\mathcal{K}_{\bar{k}}\left(A, r_{0}\right)\right)=\bar{k}\right)$

k	56	80	100	196	362	528	611	664
$\bar{k}=\operatorname{rank}\left(\overline{\mathcal{K}}_{k}\left(A, r_{0}\right)\right)$	56	73	80	93	112	126	131	132
$\operatorname{rank}\left(\overline{\mathcal{K}}_{k}\left(A, r_{0}\right) \cup \mathcal{K}_{\bar{k}}\left(A, r_{0}\right)\right)$	56	74	80	93	113	127	131	132

Bcsstk04 (from MatrixMarket)

Distance between subspaces

- Principal angles between \bar{k}-dimensional subspace $\mathcal{K}_{\bar{k}}\left(A, r_{0}\right)$ and the \bar{k}-dimensional restriction of the subspace $\overline{\mathcal{K}}_{k}\left(A, r_{0}\right)$ which corresponds to its numerical rank:

$$
0 \leq \theta_{1} \leq \theta_{2} \leq \ldots \leq \theta_{\bar{k}} \leq \pi / 2
$$

- Distance:
distance $\left(\mathcal{K}_{\bar{k}}\left(A, r_{0}\right)\right.$, restricted $\left.\left(\overline{\mathcal{K}}_{k}\left(A, r_{0}\right)\right)\right)=\sin \left(\theta_{\bar{k}}\right)$

Concluding remarks and future work

- The rate of convergence typically substantially differs for FP and exact CG. However, the trajectories of FP and exact CG approximations seem to be very close to each other.
- Inertia of computed Krylov subspaces represents phenomenon which needs to be studied.

Thank you for your kind attention

Acknowledgement

This work has been supported by the ERC－CZ project LL1202，by the GACR grant 201／13－06684S and by the GAUK grant 695612.

