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The essence of the CG method

Consider preconditioned system

Ax = b, A ∈ FN×N HPD, b ∈ FN , F is R or C

CG is the projection method which minimizes the energy
norm of the error

xk ∈ x0 +Kk(A, r0), rk ⊥ Kk(A, r0), k = 1, 2, . . .
Kk(A, r0) = span{r0, Ar0, A

2r0, . . . , A
k−1r0}

‖x− xk‖A = min {‖x− y‖A : y ∈ x0 + Kk(A, r0)} .
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Krylov subspaces in practical computations

Krylov subspace

Kk(B, v) = span{v,Bv, . . . , Bk−1v}

is built up by powering the matrix.

Important question arising in numerical computations

• What is the difference between
Kk(B, v) and Kk(B, v) ?

• Related question of sensitivity of Krylov subspaces
Kk(B + ∆B, v + δv).

• Perturbation analysis, condition number of Krylov subspaces.
[Carproux, Godunov, Kuznetsov (1997); Paige, Van Dooren (1998)]

Short recurrences =⇒ significant delay of convergence.
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CG in finite precision computations

Short recurrences

=⇒ loss of orthogonality =⇒
delay of convergence
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Idea of shift

We relate: k-th iteration of FP CG ⇐⇒ l-th iteration of exact CG
• k − l ≈ delay of convergence
• k − l ≈ rank-deficiency of computed Krylov subspace

We want to study:

‖x− xk‖A × ‖x− xl‖A
xk × xl

Kk(A, r0) × Kl(A, r0)

4th IMA Conference T. Gergelits Krylov subspaces in FP CG
6/12



Comparison of trajectory of approximation vectors
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Comparison of trajectory of approximation vectors

Ax = b

x̄k

xl

x

FN

exact computation

finite precision computation

xk

x̄k
x

x0

FNAx = b

exact computation

finite precision computation

delay at the k-th step

Trajectory of approximations xk generated by FP CG computations
follows closely the trajectory of the exact CG approximations xl.
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Comparison of Krylov subspaces

Canonical angles and vectors

ϑj = min
p∈Fj

‖p‖=1

min
q∈Gj

‖q‖=1

arccos ( p∗q ) ≡ arccos ( pj
∗qj ) , j = 1, 2, . . . , l

where

Fj ≡ F ∩ {p1, . . . , pj−1}⊥ , Gj ≡ G ∩ {q1, . . . , qj−1}⊥ ,
F = Kk(A, r0), G = Kl(A, r0).
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“Things are not so nice” (Data: bus494 from MatrixMarket)
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Influence of clustered eigenvalues

Cluster of 3 largest eigenvalues with width ∆.

∆ = 10−3
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Summary and outlook

+ The trajectories of computed approximations are enclosed in a
shrinking “cone”.

+ Observed “stability” (or inertia?) of computed Krylov subspaces
represents phenomenon which needs to be further studied.

• How to determine pairs (l, k).
• Effect of clustered eigenvalues.
• Theoretical proofs, relationship to the structure of invariant
subspaces.

• Principle difference between long and short recurrences.
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