

MOdelling REvisited + MOdel REduction ERC-CZ project LL1202 - MORE





# On the properties of Krylov subspaces in finite precision CG computations

#### Tomáš Gergelits, Zdeněk Strakoš

Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University in Prague

4th IMA Conference, Birmingham

3rd September, 2014



4th IMA Conference

T. Gergelits

- 1 The essence of the CG method
- 2 Krylov subspaces in practical computations
- 3 Idea of shift
- 4 Comparison of trajectories of approximation vectors
- **5** Comparison of generated Krylov subspaces
- 6 Concluding remarks

Consider preconditioned system

$$Ax = b, \quad A \in \mathbb{F}^{N \times N} \text{ HPD}, \quad b \in \mathbb{F}^N, \quad \mathbb{F} \text{ is } \mathbb{R} \text{ or } \mathbb{C}$$

CG is the projection method which minimizes the energy norm of the error

$$\begin{aligned} x_k &\in x_0 + \mathcal{K}_k(A, r_0), \quad r_k \perp \, \mathcal{K}_k(A, r_0), \quad k = 1, 2, \dots \\ \mathcal{K}_k(A, r_0) &= \mathsf{span}\{r_0, Ar_0, A^2 r_0, \dots, A^{k-1} r_0\} \end{aligned}$$

$$||x - x_k||_A = \min \{ ||x - y||_A : y \in x_0 + \mathcal{K}_k(A, r_0) \}.$$

<sup>3</sup>/<sub>12</sub>

## Krylov subspaces in practical computations

Krylov subspace

$$\mathcal{K}_k(B,v) = \operatorname{span}\{v, Bv, \dots, B^{k-1}v\}$$

is built up by powering the matrix.



## Krylov subspaces in practical computations

Krylov subspace

$$\mathcal{K}_k(B,v) = \operatorname{span}\{v, Bv, \dots, B^{k-1}v\}$$

is built up by powering the matrix.

Important question arising in numerical computations

• What is the difference between

$$\mathcal{K}_k(B,v)$$
 and  $\overline{\mathcal{K}}_k(B,v)$ ?

## Krylov subspaces in practical computations

Krylov subspace

$$\mathcal{K}_k(B,v) = \operatorname{span}\{v, Bv, \dots, B^{k-1}v\}$$

is built up by powering the matrix.

Important question arising in numerical computations

• What is the difference between

$$\mathcal{K}_k(B,v)$$
 and  $\overline{\mathcal{K}}_k(B,v)$ ?

• Related question of sensitivity of Krylov subspaces

$$\mathcal{K}_k(B + \Delta B, v + \delta v).$$



Krylov subspace

$$\mathcal{K}_k(B,v) = \operatorname{span}\{v, Bv, \dots, B^{k-1}v\}$$

is built up by powering the matrix.

Important question arising in numerical computations

• What is the difference between

$$\mathcal{K}_k(B,v)$$
 and  $\overline{\mathcal{K}}_k(B,v)$ ?

• Related question of sensitivity of Krylov subspaces

$$\mathcal{K}_k(B + \Delta B, v + \delta v).$$

 Perturbation analysis, condition number of Krylov subspaces. [Carproux, Godunov, Kuznetsov (1997); Paige, Van Dooren (1998)] Krylov subspace

$$\mathcal{K}_k(B,v) = \operatorname{span}\{v, Bv, \dots, B^{k-1}v\}$$

is built up by powering the matrix.

Important question arising in numerical computations

• What is the difference between

$$\mathcal{K}_k(B,v)$$
 and  $\overline{\mathcal{K}}_k(B,v)$ ?

• Related question of sensitivity of Krylov subspaces

$$\mathcal{K}_k(B + \Delta B, v + \delta v).$$

 Perturbation analysis, condition number of Krylov subspaces. [Carproux, Godunov, Kuznetsov (1997); Paige, Van Dooren (1998)]

#### Short recurrences $\implies$ significant delay of convergence.

# CG in finite precision computations

Short recurrences



4th IMA Conference

T. Gergelits

# CG in finite precision computations

Short recurrences  $\implies$  loss of orthogonality



T. Gergelits

## CG in finite precision computations

Short recurrences  $\implies$  loss of orthogonality  $\implies$  & rank deficiency



T. Gergelits

Krylov subspaces in FP CG

 $^{5}/_{12}$ 

We relate: k-th iteration of FP CG  $\iff l$ -th iteration of exact CG

•  $k-l \approx$  delay of convergence

 $\bullet \ k-l \ \ \approx \ \ {\rm rank-deficiency}$  of computed Krylov subspace We want to study:

$$\begin{aligned} \|x - \overline{x}_k\|_A &\times & \|x - x_l\|_A \\ \overline{x}_k &\times & x_l \\ \overline{\mathcal{K}}_k(A, r_0) &\times & \mathcal{K}_l(A, r_0) \end{aligned}$$





4th IMA Conference

T. Gergelits





4th IMA Conference

T. Gergelits





4th IMA Conference

T. Gergelits



Trajectories of approximation vectors are very similar in space  $\mathbb{F}^N$ .

/12



Trajectory of approximations  $\overline{x}_k$  generated by FP CG computations follows closely the trajectory of the exact CG approximations  $x_l$ .

# Comparison of Krylov subspaces

#### Canonical angles and vectors

$$\vartheta_j = \min_{\substack{p \in \mathcal{F}_j \\ \|p\|=1}} \min_{\substack{q \in \mathcal{G}_j \\ \|q\|=1}} \arccos\left(p^*q\right) \equiv \arccos\left(p_j^*q_j\right), \quad j = 1, 2, \dots, l$$

where

$$\mathcal{F}_{j} \equiv \mathcal{F} \cap \{p_{1}, \dots, p_{j-1}\}^{\perp}, \qquad \mathcal{G}_{j} \equiv \mathcal{G} \cap \{q_{1}, \dots, q_{j-1}\}^{\perp}, \\ \mathcal{F} = \overline{\mathcal{K}}_{k}(A, r_{0}), \qquad \qquad \mathcal{G} = \mathcal{K}_{l}(A, r_{0}).$$





T. Gergelits

## Influence of clustered eigenvalues



4th IMA Conference

T. Gergelits

Krylov subspaces in FP CG

 $^{11}/_{12}$ 

# Summary and outlook

- The trajectories of computed approximations are enclosed in a shrinking "cone".
- Solution Observed "stability" (or inertia?) of computed Krylov subspaces represents phenomenon which needs to be further studied.
  - How to determine pairs (l, k).
  - Effect of clustered eigenvalues.
  - Theoretical proofs, relationship to the structure of invariant subspaces.
  - Principle difference between long and short recurrences.

# Summary and outlook

- The trajectories of computed approximations are enclosed in a shrinking "cone".
- Solution Observed "stability" (or inertia?) of computed Krylov subspaces represents phenomenon which needs to be further studied.
  - How to determine pairs (l, k).
  - Effect of clustered eigenvalues.
  - Theoretical proofs, relationship to the structure of invariant subspaces.
  - Principle difference between long and short recurrences.

#### Acknowledgement

This work has been supported by the ERC-CZ project LL1202, by the GACR grant 201/13-06684S and by the GAUK grant 695612.