On the properties of Krylov subspaces in finite precision CG computations

Tomáš Gergelits, Zdeněk Strakoš

Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University in Prague

4th IMA Conference, Birmingham
3rd September, 2014

Content of the talk

(1) The essence of the CG method
(2) Krylov subspaces in practical computations
(3) Idea of shift
(4) Comparison of trajectories of approximation vectors
(5) Comparison of generated Krylov subspaces
(6) Concluding remarks

The essence of the CG method

Consider preconditioned system

$$
A x=b, \quad A \in \mathbb{F}^{N \times N} \mathrm{HPD}, \quad b \in \mathbb{F}^{N}, \quad \mathbb{F} \text { is } \mathbb{R} \text { or } \mathbb{C}
$$

CG is the projection method which minimizes the energy norm of the error

$$
\begin{array}{r}
x_{k} \in x_{0}+\mathcal{K}_{k}\left(A, r_{0}\right), \quad r_{k} \perp \mathcal{K}_{k}\left(A, r_{0}\right), \quad k=1,2, \ldots \\
\mathcal{K}_{k}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{k-1} r_{0}\right\} \\
\left\|x-x_{k}\right\|_{A}=\min \left\{\|x-y\|_{A}: y \in x_{0}+\mathcal{K}_{k}\left(A, r_{0}\right)\right\}
\end{array}
$$

Krylov subspaces in practical computations

Krylov subspace

$$
\mathcal{K}_{k}(B, v)=\operatorname{span}\left\{v, B v, \ldots, B^{k-1} v\right\}
$$

is built up by powering the matrix.

Krylov subspaces in practical computations

Krylov subspace

$$
\mathcal{K}_{k}(B, v)=\operatorname{span}\left\{v, B v, \ldots, B^{k-1} v\right\}
$$

is built up by powering the matrix.
Important question arising in numerical computations

- What is the difference between

$$
\mathcal{K}_{k}(B, v) \quad \text { and } \quad \overline{\mathcal{K}}_{k}(B, v) ?
$$

Krylov subspaces in practical computations

Krylov subspace

$$
\mathcal{K}_{k}(B, v)=\operatorname{span}\left\{v, B v, \ldots, B^{k-1} v\right\}
$$

is built up by powering the matrix.
Important question arising in numerical computations

- What is the difference between

$$
\mathcal{K}_{k}(B, v) \quad \text { and } \quad \overline{\mathcal{K}}_{k}(B, v) ?
$$

- Related question of sensitivity of Krylov subspaces

$$
\mathcal{K}_{k}(B+\Delta B, v+\delta v)
$$

Krylov subspaces in practical computations

Krylov subspace

$$
\mathcal{K}_{k}(B, v)=\operatorname{span}\left\{v, B v, \ldots, B^{k-1} v\right\}
$$

is built up by powering the matrix.
Important question arising in numerical computations

- What is the difference between

$$
\mathcal{K}_{k}(B, v) \quad \text { and } \quad \overline{\mathcal{K}}_{k}(B, v) ?
$$

- Related question of sensitivity of Krylov subspaces

$$
\mathcal{K}_{k}(B+\Delta B, v+\delta v)
$$

- Perturbation analysis, condition number of Krylov subspaces. [Carproux, Godunov, Kuznetsov (1997); Paige, Van Dooren (1998)]

Krylov subspaces in practical computations

Krylov subspace

$$
\mathcal{K}_{k}(B, v)=\operatorname{span}\left\{v, B v, \ldots, B^{k-1} v\right\}
$$

is built up by powering the matrix.
Important question arising in numerical computations

- What is the difference between

$$
\mathcal{K}_{k}(B, v) \quad \text { and } \quad \overline{\mathcal{K}}_{k}(B, v) ?
$$

- Related question of sensitivity of Krylov subspaces

$$
\mathcal{K}_{k}(B+\Delta B, v+\delta v)
$$

- Perturbation analysis, condition number of Krylov subspaces. [Carproux, Godunov, Kuznetsov (1997); Paige, Van Dooren (1998)]

Short recurrences \Longrightarrow significant delay of convergence.

CG in finite precision computations

Short recurrences

CG in finite precision computations

Short recurrences \Longrightarrow loss of orthogonality

CG in finite precision computations

delay of convergence

Short recurrences \Longrightarrow loss of orthogonality \Longrightarrow
rank deficiency

Idea of shift

We relate: k-th iteration of FP CG $\Longleftrightarrow l$-th iteration of exact CG

- $k-l \approx$ delay of convergence
- $k-l \approx$ rank-deficiency of computed Krylov subspace

We want to study:

$$
\begin{aligned}
\left\|x-\bar{x}_{k}\right\|_{A} & \times\left\|x-x_{l}\right\|_{A} \\
\bar{x}_{k} & \times x_{l} \\
\overline{\mathcal{K}}_{k}\left(A, r_{0}\right) & \times \mathcal{K}_{l}\left(A, r_{0}\right)
\end{aligned}
$$

Comparison of trajectory of approximation vectors

Observation

$$
\frac{\left\|\bar{x}_{k}-x_{l}\right\|_{A}}{\left\|x-x_{l}\right\|_{A}} \ll 1
$$

Trajectories of approximation vectors are very similar in space \mathbb{F}^{N}.

Comparison of trajectory of approximation vectors

Trajectory of approximations \bar{x}_{k} generated by FP CG computations follows closely the trajectory of the exact CG approximations x_{l}.

Comparison of Krylov subspaces

Canonical angles and vectors

$$
\vartheta_{j}=\min _{\substack{p \in \mathcal{F}_{j} \\\|p\|=1}} \min _{\substack{q \in \mathcal{G}_{j} \\\|q\|=1}} \arccos \left(p^{*} q\right) \equiv \arccos \left(p_{j}{ }^{*} q_{j}\right), \quad j=1,2, \ldots, l
$$

where

$$
\begin{array}{lr}
\mathcal{F}_{j} \equiv \mathcal{F} \cap\left\{p_{1}, \ldots, p_{j-1}\right\}^{\perp}, & \mathcal{G}_{j} \equiv \mathcal{G} \cap\left\{q_{1}, \ldots, q_{j-1}\right\}^{\perp} \\
\mathcal{F}=\overline{\mathcal{K}}_{k}\left(A, r_{0}\right), & \mathcal{G}=\mathcal{K}_{l}\left(A, r_{0}\right) .
\end{array}
$$

Influence of clustered eigenvalues

Cluster of 3 largest eigenvalues with width Δ.

Comparison of principle angles of subspaces $\overline{\mathcal{K}}_{k}$ and \mathcal{K}_{l}
$\Delta=10^{-3}$

$\Delta=10^{-8}$
$\Delta=10^{-12}$

Summary and outlook

4 Tq8 The trajectories of computed approximations are enclosed in a shrinking "cone".
[Tz) Observed "stability" (or inertia?) of computed Krylov subspaces represents phenomenon which needs to be further studied.

- How to determine pairs (l, k).
- Effect of clustered eigenvalues.
- Theoretical proofs, relationship to the structure of invariant subspaces.
- Principle difference between long and short recurrences.

Summary and outlook

1 Th shrinking "cone".
[桨 Observed "stability" (or inertia?) of computed Krylov subspaces represents phenomenon which needs to be further studied.

- How to determine pairs (l, k).
- Effect of clustered eigenvalues.
- Theoretical proofs, relationship to the structure of invariant subspaces.
- Principle difference between long and short recurrences.

Acknowledgement

This work has been supported by the ERC-CZ project LL1202, by the GACR grant 201/13-06684S and by the GAUK grant 695612.

