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Bounding GMRES residual norm

Ax = b , A ∈ Cn×n is nonsingular, b ∈ Cn ,

x0 = 0 and ‖b‖ = 1 for simplicity .

GMRES computes xk ∈ Kk(A, b) such that rk ≡ b−Axk satisfies

‖rk‖ = min
p∈πk

‖p(A)b‖ (GMRES)

≤ max
‖b‖=1

min
p∈πk

‖p(A)b‖ (worst-case GMRES)

≤ min
p∈πk

‖p(A)‖ (ideal GMRES)

where πk = degree ≤ k polynomials with p(0) = 1 .
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Two bounds on the GMRES residual norm

max
‖b‖=1

min
p∈πk

‖p(A)b‖ ≤ min
p∈πk

‖p(A)‖

They are equal if A is normal.
[Greenbaum, Gurvits ’94; Joubert ’94].

The inequality can be strict if A is non-normal.
[Toh ’97; Faber, Joubert, Knill, Manteuffel ’96].
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How to prove the equality for normal matrices?

If A is normal, then

max
‖b‖=1

min
p∈πk

‖p(A)b‖ = min
p∈πk

‖p(A)‖ .

[Joubert ’94] Proof using analytic methods of optimization
theory, for real or complex data, only in the GMRES context.

[Greenbaum, Gurvits ’94]: Proof based mostly on matrix theory,
only for real data but in a more general form.

These proofs are quite complicated.

Is there a straightforward proof that uses, e.g., known classical
results of approximation theory?
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Outline

1 Normal matrices and classical approximation problems

2 Best polynomial approximation for f on Γ

3 Proof

4 Connection to results by Greenbaum and Gurvits
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Link to classical approximation problems

A is normal iff A = QΛQ∗, Q∗Q = I .
Γ ≡ {λ1, . . . , λn} is the set of eigenvalues of A.
For any function g defined on Γ denote

‖g‖Γ ≡ max
z∈Γ
|g(z)|.

p ∈ πk means

p(z) = 1−
k∑
i=1

αi z
i .

Then

min
p∈πk

‖p(A)‖ = min
p∈πk

‖Qp(Λ)Q∗‖ = min
p∈πk

max
λi

|p(λi)|

= min
α1,...,αk

∥∥∥∥∥1−
k∑
i=1

αi z
i

∥∥∥∥∥
Γ
.
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Generalization

Instead of 1 we consider a general function f defined on Γ.
Instead of {zi}ki=1 we consider general basis functions ϕi.
We ask whether

max
‖b‖=1

min
p∈Pk

‖f(A)b− p(A)b‖ = min
p∈Pk

‖f(A)− p(A)‖

where A is normal and p is of the form

p(z) =
k∑
i=1

αi ϕi(z) ∈ Pk .

A comment on R versus C → coefficients αi.

As in the previous

min
p∈Pk

‖f(A)− p(A)‖ = min
p∈Pk

‖f(z)− p(z)‖Γ .
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A polynomial of best approximation for f on Γ
Definition and notation

p∗ ∈ Pk is a polynomial of best approximation for f on Γ when

‖f − p∗‖Γ = min
p∈Pk

‖f − p‖Γ.

For p ∈ Pk, define

Γ(p) ≡ {z ∈ Γ : |f(z)− p(z)| = ‖f − p‖Γ}.
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Characterization of best approximation for f on Γ
[Chebyshev, Berstein, de la Vallée Poussing, Haar, Remez, Zuhovickĭı, Kolmogorov]
[Rivlin, Shapiro ’61], [Lorentz ’86]

Characterization theorem (complex case)

p∗ ∈ Pk is a polynomial of best approximation for f on Γ

if and only if

there exist ` points µi ∈ Γ(p∗) where 1 ≤ ` ≤ 2k + 1, and
` real numbers ω1, . . . , ω` > 0 with ω1 + · · ·+ ω` = 1, such that

∑̀
j=1

ωj p(µj) [f(µj)− p∗(µj)] = 0, ∀ p ∈ Pk.

Denote

δ ≡ ‖f − p∗‖Γ = |f(µj)− p∗(µj)|, j = 1, . . . , ` .
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Proof I
It suffices to prove that

max
‖b‖=1

min
p∈Pk

‖f(A)b− p(A)b‖ ≥ min
p∈Pk

‖f(A)− p(A)‖

= min
p∈Pk

‖f(z)− p(z)‖Γ .

Suppose that the eigenvalues of A are sorted such that
λj = µj , j = 1, . . . , `.

Define the vector w
w = Q ξ, ξ ≡ [

√
ω1, . . . ,

√
ω`, 0, . . . , 0]T .

Then

0 =
∑̀
j=1

ωj p(µj) [f(µj)− p∗(µj)]

= ξHp(Λ)H [f(Λ)− p∗(Λ)] ξ
= wHp(A)H [f(A)− p∗(A)]w .
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Proof II
In other words,

f(A)b− p∗(A)w ⊥ p(A)w , ∀ p ∈ Pk ,

or, equivalently,

‖f(A)w − p∗(A)w‖ = min
p∈Pk

‖f(A)w − p(A)w‖ .

Moreover

‖f(A)w − p∗(A)w‖2 = ‖ [f(Λ)− p∗(Λ)] ξ‖2

=
∑̀
j=1

ξ2
j |f(µj)− p∗(µj)|2

=
∑̀
j=1

ωjδ
2 = δ2

= ‖f(A)− p∗(A)‖2 .
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Proof III

In summary, for p∗ ∈ Pk we have constructed w ∈ Cn such that

min
p∈Pk

‖f(A)− p(A)‖ = ‖f(A)− p∗(A)‖

= ‖f(A)w − p∗(A)w‖2

= min
p∈Pk

‖f(A)w − p(A)w‖

≤ max
‖b‖=1

min
p∈Pk

‖f(A)b− p(A)b‖ .

The proof for complex A is finished.
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A note on the real case

Assume that A, f(A) and ϕi(A) are real. We look for a
polynomial of a best approximation with real coefficients.

Technical problem: A can have complex eigenvalues but
we look for a real vector b that maximizes

min
p∈Pk

‖f(A)b− p(A)b‖ .

Γ is a set of points that appear in complex conjugate pairs.

This symmetry with respect to the real axes has been used to
find a real b and to prove the equality [Liesen, T. 2013].
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Results by Greenbaum and Gurvits, Horn and Johnson

Theorem [Greenbaum, Gurvits ’94]

Let A0,A1, . . . ,Ak be normal matrices that commute. Then

max
‖v‖=1

min
α1,...,αk

‖A0v −
k∑
i=1

αiAiv‖ = min
α1,...,αk

‖A0 −
k∑
i=1

αiAi‖.

Theorem [Theorem 2.5.5, Horn, Johnson ’90]

Commuting normal matrices can be simultaneously unitarily
diagonalized, i.e., there exists a unitary U so that

UHAiU = Λi , i = 0, 1, . . . , k.
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Connection to results by Greenbaum and Gurvits

Using the theorem by Horn and Johnson we can equivalently
rewrite the problem

min
α1,...,αk

‖A0 −
k∑
i=1

αi Ai‖

in our notation

min
α1,...,αk

‖f(A)−
k∑
i=1

αi ϕi(A)‖

where A is any diagonal matrix with distinct eigenvalues and
f and ϕi are any functions satisfying

f(A) = Λ0, ϕi(A) = Λi, i = 1, . . . , k.
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Summary

Inspired by the convergence analysis of GMRES
we formulated two general approximation problems
involving normal matrices.

We used a direct link between
approximation problems involving normal matrices,
classical approximation problems

and proved that

max
‖b‖=1

min
p∈Pk

‖f(A)b− p(A)b‖ = min
p∈Pk

‖f(A)− p(A)‖ .

Our results
represent a generalization of results by [Joubert ’94],
offer another point of view to [Greenbaum, Gurvits ’94].
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