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Fredholm integral equations of the first kind

Given the continuous smooth kernel K (s, t) and the (measured)
data g(s), the aim is to find the (source) function f (t) such that

g(s) =

∫
I
K (s, t)f (t)dt.

Fredholm integral has smoothing property, i.e. high frequency
components in g are dampened compared to f .

Example: Barcode reading

sharp barcode Gaussian blur blurred barcode sharp barcode Gaussian blur blurred barcode
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Discretization

Consider a discretization of the integral equation in the form of
linear inverse problem

Ax ≈ b, b = bexact + bnoise, A ∈ Rm×n, x ∈ Rn,

where vector bnoise

I is an unknown perturbation representing rounding and
discretization error, and/or noise with physical sources,

I resembles white noise, i.e., it has flat frequency characteristics,

I ‖bnoise‖ � ‖bexact‖ .

Aim is to approximate xexact ≡ A†bexact.

Remark

I A dampens high frequencies

I A† amplifies high frequencies
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Noise amplification

shaw(400)1

0 200 400
0

2

4
bexact

0 200 400
−0.01

0

0.01
bnoise

0 200 400
0

2

4
b

0 200 400
0

1

2

3
xexact

0 200 400
−5

0

5
x 10

16A−1bnoise

0 200 400
−5

0

5
x 10

16 A−1b

1Hansen: Regularization Tools
6/26



Noise amplification

The components of the ”naive” solution

xnaive ≡ A†b =
∑l

j=1

uTj b
exact

σj
vj︸ ︷︷ ︸

xexact

+
∑l

j=1

uTj b
noise

σj
vj︸ ︷︷ ︸

amplified noise

+
∑N

j=l+1

uTj b
exact

σj
vj︸ ︷︷ ︸

xexact

+
∑N

j=l+1

uTj b
noise

σj
vj︸ ︷︷ ︸

amplified noise

corresponding to small σj ’s are dominated by amplified noise.

Regularization is used to suppress the effect of amplified noise while
extracting as much information about the solution as possible.
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Overview of regularization methods

Spectral filtering (e.g., truncated SVD, Tikhonov): suitable
for solving small ill-posed problems.

Projection methods (e.g., LSQR): suitable for solving large
ill-posed problems. The size of projection space represents a
regularization parameter [Björck - 88].

Hybrid methods: combination of outer iterative regularization
with a spectral filtering of the projected small problem, see e.g.,
[Chung, Nagy, O’Leary - 08], [Kilmer, Hansen, Español - 06],
[Kilmer, O’Leary - 01], [O’Leary, Simmons - 81].
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Denoising

Suppose we have an estimate of bnoise available. Subtract the
estimate b̃noise and solve transformed system

Ax ≈ bdenoised, where bdenoised = b − b̃noise .

In practice, the aim is to

I decrease the relative noise level in the right-hand side

and/or

I make the spectral properties of noise more favorable –
dampen high frequencies.
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Basic algorithm

Golub-Kahan iterative bidiagonalization (GK)

input: A, b;
define: w0 ≡ 0, s1 ≡ b/β1, where β1 ≡ ‖b‖;
for k = 1, 2, . . .

αkwk = AT sk − βkwk−1 , ‖wk‖ = 1 ,

βk+1sk+1 = Awk − αksk , ‖sk+1‖ = 1 ,

until αk = 0 or βk+1 = 0, or until k = n.

After k steps, GK produces:

I orthonormal vectors s1, . . . , sk+1,

I orthonormal vectors w1, . . . ,wk ,

I normalization coefficients α1, . . . , αk and β1, . . . , βk+1.
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Noise revealing in Golub-Kahan bidiagonalization
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[Hnětynková, Plešinger, Strakoš - 09]
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Noise propagation in Golub-Kahan bidiagonalization
Define sexact

1 ≡ bexact/β1, snoise
1 ≡ bnoise/β1, and for k = 1, 2, . . .

αkwk = AT sk − βkwk−1 ,

βk+1s
exact
k+1 ≡ Awk − αks

exact
k

βk+1s
noise
k+1 ≡ − αks

noise
k

The troublesome high-frequency noise is confined to snoise
k . Thus

snoise
k+1 = − αk

βk+1
snoise
k = (−1)k

k∏
j=1

αj

βj+1
snoise

1 = (−1)k
k∏

j=1

αj

βj+1

bnoise

‖b‖
,

i.e., the study of white noise propagation reduces to the study of
the cumulative amplification ratio

ρ−1
k ≡

k∏
j=1

αj

βj+1
.

[Hnětynková, Plešinger, Strakoš - 09]
13/26



Properties of the amplification ratio
GK for spectral components

αk(V Twk) = Σ (UT sk)− βk(V Twk−1) ,

βk+1(UT sk+1) = Σ (V Twk)− αk(UT sk) .

Vectors UT sk and V Twk exhibit dominance in the same
components, therefore the orthogonality between sk+1 and sk
cannot be achieved without significant cancellation, and
βk+1 � αk . Since the dominance in UT sk and V Twk−1 is shifted
by one component, αk ≈ βk .

Therefore, the cumulative amplification ratio ρ−1
k ≡

∏k
j=1

αj

βj+1
on

average rapidly grows until it reaches the noise revealing iteration

knoise ≡ argmax
k

ρ−1
k .

At this step sk+1 is dominated by snoise
k+1 .
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Noise revealing
shaw(400)
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Examples
phillips(400)
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Denoising by noise revealing

Recall

snoise
k+1 = (−1)kρ−1

k

bnoise

‖b‖
,

which yields
bnoise = ‖b‖(−1)kρks

noise
k+1 .

At step k = knoise, sk+1 is dominated by snoise
k+1 . Take

bnoise ≈ b̃noise ≡ ‖b‖(−1)kρksk+1,

i.e., estimate noise by properly scaled noise revealing left
bidiagonalization vector.

Define the denoised right-hand side

bdenoised ≡ b − b̃noise.
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Properties of denoised right-hand side
It was shown in [Kub́ınová - 13] that from

bdenoised = b − b̃noise, b̃noise = ‖b‖(−1)kρksk+1

and from

bexact = ‖b‖
[
s1 − snoise

1

]
= ‖b‖

[
s1 − (−1)kρks

noise
k+1

]
,

we get
bdenoised − bexact = −‖b‖(−1)kρks

exact
k+1 .

Consequently

I remaining noise is smooth - high frequency part of noise is not
present;

I new relative noise level is

‖bdenoised − bexact‖
‖bexact‖

≈ ρk‖sexact
k+1 ‖ ≈

√
ρ2
k − δ2

noise.
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Regularization effect of denoising
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Quantitative properties
shaw(400)

δnoise 1e-02 1e-04 1e-06 1e-08

knoise + 1 5 8 10 13
ρknoise 1.09e-02 1.05e-04 1.32e-06 1.15e-08

‖bdenoised−bexact‖
‖bexact‖ 4.57e-03 3.67e-05 8.73e-07 6.30e-09

i laplace(400,1)

δnoise 1e-02 1e-04 1e-06 1e-08

knoise + 1 6 12 17 23
ρknoise 1.89e-02 1.62e-04 1.61e-06 1.57e-08

‖bdenoised−bexact‖
‖bexact‖ 1.62e-02 1.29e-04 1.28e-06 1.26e-08

phillips(400)

δnoise 1e-02 1e-04 1e-06 1e-08

knoise + 1 5 9 16 32
ρknoise 1.39e-02 1.44e-04 1.41e-06 2.15e-08

‖bdenoised−bexact‖
‖bexact‖ 9.96e-03 1.06e-04 1.09e-06 2.00e-08
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Comparison with other methods
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Denoising for colored noise

Generally:

High-frequency noise is considered the more convenient alternative
– distinguish easier between low-frequency exact data and noise.
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Observation:
For low-frequency noise, ‖sexact

k ‖+ ‖snoise
k ‖ 6≈ 1.
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Conclusion

Method at a glance

I Golub-Kahan iterative bidiagonalization

I find noise revealing iteration argmax
k

ρ−1
k = argmax

k

∏k
j=1

αj

βj+1

I subtract properly scaled noise revealing left bidiagonalization
vector from b, i.e., bdenoised = b − ‖b‖(−1)kρksk+1

Remarks

I the method is extremely cheap

I loss of orthogonality delays noise revealing

Open questions

I how to solve Ax ≈ bdenoised, further regularization

I relation to other methods
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Thank you for your attention.

26/26


	Discrete inverse problems
	Noise revealing in Golub-Kahan iterative bidiagonalization
	Denoising based on noise revealing
	Conclusion

