Noise revealing in Golub-Kahan bidiagonalization as a mean of regularization in discrete inverse problems

Iveta Hnětynková, Marie Kubínová

Charles University in Prague \& Institute of Computer Science AS CR
SNA'14 - Nymburk
January 2014

Outline

Discrete inverse problems

Noise revealing in Golub-Kahan iterative bidiagonalization

Denoising based on noise revealing

Conclusion

Outline

Discrete inverse problems

Noise revealing in Golub-Kahan iterative bidiagonalization

Denoising based on noise revealing

Conclusion

Fredholm integral equations of the first kind

Given the continuous smooth kernel $K(s, t)$ and the (measured) data $g(s)$, the aim is to find the (source) function $f(t)$ such that

$$
g(s)=\int_{I} K(s, t) f(t) \mathrm{d} t
$$

Fredholm integral has smoothing property, i.e. high frequency components in g are dampened compared to f.

Example: Barcode reading

Discretization

Consider a discretization of the integral equation in the form of linear inverse problem

$$
A x \approx b, \quad b=b^{\text {exact }}+b^{\text {noise }}, \quad A \in \mathbb{R}^{m \times n}, \quad x \in \mathbb{R}^{n},
$$

where vector $b^{\text {noise }}$

- is an unknown perturbation representing rounding and discretization error, and/or noise with physical sources,
- resembles white noise, i.e., it has flat frequency characteristics,
- $\left\|b^{\text {noise }}\right\| \ll\left\|b^{\text {exact }}\right\|$.

Aim is to approximate $x^{\text {exact }} \equiv A^{\dagger} b^{\text {exact }}$.

Remark

- A dampens high frequencies
- A^{\dagger} amplifies high frequencies

Noise amplification

$$
\operatorname{shaw}(400)^{1}
$$

Noise amplification

The components of the "naive" solution

$$
\begin{aligned}
x^{\text {naive }} \equiv A^{\dagger} b & =\underbrace{\sum_{j=1}^{l} \frac{u_{j}^{T} b^{\text {exact }}}{\sigma_{j}} v_{j}}_{x^{\text {exact }}}+\underbrace{\sum_{j=1}^{l} \frac{u_{j}^{T} b^{\text {noise }}}{\sigma_{j}} v_{j}}_{\text {amplified noise }} \\
& +\underbrace{\sum_{j=I+1}^{N} \frac{u_{j}^{T} b^{\text {exact }}}{\sigma_{j}} v_{j}}_{x^{\text {exact }}}+\underbrace{\sum_{j=I+1}^{N} \frac{u_{j}^{T} b^{\text {noise }}}{\sigma_{j}} v_{j}}_{\text {amplified noise }}
\end{aligned}
$$

corresponding to small σ_{j} 's are dominated by amplified noise.

Regularization is used to suppress the effect of amplified noise while extracting as much information about the solution as possible.

Overview of regularization methods

Spectral filtering (e.g., truncated SVD, Tikhonov): suitable for solving small ill-posed problems.

Projection methods (e.g., LSQR): suitable for solving large ill-posed problems. The size of projection space represents a regularization parameter [Björck - 88].

Hybrid methods: combination of outer iterative regularization with a spectral filtering of the projected small problem, see e.g., [Chung, Nagy, O'Leary - 08], [Kilmer, Hansen, Español - 06], [Kilmer, O'Leary - 01], [O'Leary, Simmons - 81].

Denoising

Suppose we have an estimate of $b^{\text {noise }}$ available. Subtract the estimate $\tilde{b}^{\text {noise }}$ and solve transformed system

$$
A x \approx b^{\text {denoised }}, \quad \text { where } \quad b^{\text {denoised }}=b-\tilde{b}^{\text {noise }}
$$

In practice, the aim is to

- decrease the relative noise level in the right-hand side and/or
- make the spectral properties of noise more favorable dampen high frequencies.

Outline

Discrete inverse problems

Noise revealing in Golub-Kahan iterative bidiagonalization

Denoising based on noise revealing

Conclusion

Basic algorithm

Golub-Kahan iterative bidiagonalization (GK)
input: A, b;
define: $w_{0} \equiv 0, s_{1} \equiv b / \beta_{1}$, where $\beta_{1} \equiv\|b\|$;
for $k=1,2, \ldots$

$$
\begin{aligned}
\alpha_{k} w_{k} & =A^{T} s_{k}-\beta_{k} w_{k-1}, & \left\|w_{k}\right\| & =1 \\
\beta_{k+1} s_{k+1} & =A w_{k}-\alpha_{k} s_{k}, & \left\|s_{k+1}\right\| & =1
\end{aligned}
$$

until $\alpha_{k}=0$ or $\beta_{k+1}=0$, or until $k=n$.

After k steps, GK produces:

- orthonormal vectors s_{1}, \ldots, s_{k+1},
- orthonormal vectors w_{1}, \ldots, w_{k},
- normalization coefficients $\alpha_{1}, \ldots, \alpha_{k}$ and $\beta_{1}, \ldots, \beta_{k+1}$.

Noise revealing in Golub-Kahan bidiagonalization

```
shaw (400)
```


[Hnětynková, Plešinger, Strakoš - 09]

Noise propagation in Golub-Kahan bidiagonalization

Define $s_{1}^{\text {exact }} \equiv b^{\text {exact }} / \beta_{1}, s_{1}^{\text {noise }} \equiv b^{\text {noise }} / \beta_{1}$, and for $k=1,2, \ldots$

$$
\begin{array}{rlrl}
\alpha_{k} w_{k} & = & A^{T} s_{k}-\beta_{k} w_{k-1} \\
\beta_{k+1} s_{k+1}^{\text {exact }} & \equiv & A w_{k}-\alpha_{k} s_{k}^{\text {exact }} \\
\beta_{k+1} s_{k+1}^{\text {noise }} \equiv & & & -\alpha_{k} s_{k}^{\text {noise }}
\end{array}
$$

The troublesome high-frequency noise is confined to $s_{k}^{\text {noise }}$. Thus

$$
s_{k+1}^{\text {noise }}=-\frac{\alpha_{k}}{\beta_{k+1}} s_{k}^{\text {noise }}=(-1)^{k} \prod_{j=1}^{k} \frac{\alpha_{j}}{\beta_{j+1}} s_{1}^{\text {noise }}=(-1)^{k} \prod_{j=1}^{k} \frac{\alpha_{j}}{\beta_{j+1}} \frac{b^{\text {noise }}}{\|b\|}
$$

i.e., the study of white noise propagation reduces to the study of the cumulative amplification ratio

$$
\rho_{k}^{-1} \equiv \prod_{j=1}^{k} \frac{\alpha_{j}}{\beta_{j+1}}
$$

[Hnětynková, Plešinger, Strakoš - 09]

Properties of the amplification ratio

GK for spectral components

$$
\begin{aligned}
\alpha_{k}\left(V^{T} w_{k}\right) & =\Sigma\left(U^{T} s_{k}\right)-\beta_{k}\left(V^{T} w_{k-1}\right), \\
\beta_{k+1}\left(U^{T} s_{k+1}\right) & =\Sigma\left(V^{T} w_{k}\right)-\alpha_{k}\left(U^{T} s_{k}\right)
\end{aligned}
$$

Vectors $U^{T} s_{k}$ and $V^{T} w_{k}$ exhibit dominance in the same components, therefore the orthogonality between s_{k+1} and s_{k} cannot be achieved without significant cancellation, and $\beta_{k+1} \ll \alpha_{k}$. Since the dominance in $U^{T} s_{k}$ and $V^{T} w_{k-1}$ is shifted by one component, $\alpha_{k} \approx \beta_{k}$.

Therefore, the cumulative amplification ratio $\rho_{k}^{-1} \equiv \prod_{j=1}^{k} \frac{\alpha_{j}}{\beta_{j+1}}$ on average rapidly grows until it reaches the noise revealing iteration

$$
k_{\text {noise }} \equiv \underset{k}{\operatorname{argmax}} \rho_{k}^{-1} .
$$

At this step s_{k+1} is dominated by $s_{k+1}^{\text {noise }}$.

Noise revealing

shaw (400)

Examples

phillips(400)

Outline

Discrete inverse problems

Noise revealing in Golub-Kahan iterative bidiagonalization

Denoising based on noise revealing

Conclusion

Denoising by noise revealing

Recall

$$
s_{k+1}^{\text {noise }}=(-1)^{k} \rho_{k}^{-1} \frac{b^{\text {noise }}}{\|b\|}
$$

which yields

$$
b^{\text {noise }}=\|b\|(-1)^{k} \rho_{k} s_{k+1}^{\text {noise }}
$$

At step $k=k_{\text {noise }}, s_{k+1}$ is dominated by $s_{k+1}^{\text {noise }}$. Take

$$
b^{\text {noise }} \approx \tilde{b}^{\text {noise }} \equiv\|b\|(-1)^{k} \rho_{k} s_{k+1},
$$

i.e., estimate noise by properly scaled noise revealing left bidiagonalization vector.

Define the denoised right-hand side

$$
b^{\text {denoised }} \equiv b-\tilde{b}^{\text {noise }}
$$

Properties of denoised right-hand side

It was shown in [Kubínová - 13] that from

$$
b^{\text {denoised }}=b-\tilde{b}^{\text {noise }}, \quad \tilde{b}^{\text {noise }}=\|b\|(-1)^{k} \rho_{k} s_{k+1}
$$

and from

$$
b^{\text {exact }}=\|b\|\left[s_{1}-s_{1}^{\text {noise }}\right]=\|b\|\left[s_{1}-(-1)^{k} \rho_{k} s_{k+1}^{\text {noise }}\right]
$$

we get

$$
b^{\text {denoised }}-b^{\text {exact }}=-\|b\|(-1)^{k} \rho_{k} s_{k+1}^{\text {exact }}
$$

Consequently

- remaining noise is smooth - high frequency part of noise is not present;
- new relative noise level is

$$
\frac{\left\|b^{\text {denoised }}-b^{\text {exact }}\right\|}{\left\|b^{\text {exact }}\right\|} \approx \rho_{k}\left\|s_{k+1}^{\text {exact }}\right\| \approx \sqrt{\rho_{k}^{2}-\delta_{\text {noise }}^{2}}
$$

Regularization effect of denoising

shaw (400)

Quantitative properties

$\operatorname{shaw}(400)$								
$\delta_{\text {noise }}$	$1 \mathrm{e}-02$	$1 \mathrm{e}-04$	$1 \mathrm{e}-06$	$1 \mathrm{e}-08$				
$k_{\text {noise }}+1$	5	8	10	13				
$k_{\text {noise }}$ $\frac{\\| \text { denoised }^{2}}{}-b^{\text {exact }} \\|$ $\left\\|b^{\text {bexact }}\right\\|$	$1.09 \mathrm{e}-02$	$1.05 \mathrm{e}-04$	$1.32 \mathrm{e}-06$	$1.15 \mathrm{e}-08$				
	$4.57 \mathrm{e}-03$	$3.67 \mathrm{e}-05$	$8.73 \mathrm{e}-07$	$6.30 \mathrm{e}-09$				

i_laplace $(400,1)$								
$\delta_{\text {noise }}$	$1 \mathrm{e}-02$	$1 \mathrm{e}-04$	$1 \mathrm{e}-06$	$1 \mathrm{e}-08$				
$k_{\text {noise }}+1$	6	12	17	23				
$\rho_{k_{\text {noise }}}$	$1.89 \mathrm{e}-02$	$1.62 \mathrm{e}-04$	$1.61 \mathrm{e}-06$	$1.57 \mathrm{e}-08$				
$\frac{\left\\|b^{\text {denoised }}-b^{\text {exact }}\right\\|}{\left\\|b^{\text {exact }}\right\\|}$	$1.62 \mathrm{e}-02$	$1.29 \mathrm{e}-04$	$1.28 \mathrm{e}-06$	$1.26 \mathrm{e}-08$				

phillips (400)						
$\delta_{\text {noise }}$	$1 \mathrm{e}-02$	$1 \mathrm{e}-04$	$1 \mathrm{e}-06$	$1 \mathrm{e}-08$		
$k_{\text {noise }}+1$	5	9	16	32		
$\rho_{k_{\text {noise }}}$	$1.39 \mathrm{e}-02$	$1.44 \mathrm{e}-04$	$1.41 \mathrm{e}-06$	$2.15 \mathrm{e}-08$		
$\frac{\\| \text { d }^{\text {denoised }}}{}-b^{\text {exact }} \\|$	$9.96 \mathrm{e}-03$	$1.06 \mathrm{e}-04$	$1.09 \mathrm{e}-06$	$2.00 \mathrm{e}-08$		

Comparison with other methods

shaw (400)

phillips(400)

Denoising for colored noise

Generally:

High-frequency noise is considered the more convenient alternative

- distinguish easier between low-frequency exact data and noise.

high-frequency

white

low-frequency

Observation:
For low-frequency noise, $\left\|s_{k}^{\text {exact }}\right\|+\left\|s_{k}^{\text {noise }}\right\| \not \approx 1$.

Outline

Discrete inverse problems

Noise revealing in Golub-Kahan iterative bidiagonalization

Denoising based on noise revealing

Conclusion

Conclusion

Method at a glance

- Golub-Kahan iterative bidiagonalization
- find noise revealing iteration $\underset{k}{\operatorname{argmax}} \rho_{k}^{-1}=\underset{k}{\operatorname{argmax}} \prod_{j=1}^{k} \frac{\alpha_{j}}{\beta_{j+1}}$
- subtract properly scaled noise revealing left bidiagonalization vector from b, i.e., $b^{\text {denoised }}=b-\|b\|(-1)^{k} \rho_{k} s_{k+1}$

Remarks

- the method is extremely cheap
- loss of orthogonality delays noise revealing

Open questions

- how to solve $A x \approx b^{\text {denoised }}$, further regularization
- relation to other methods

Thank you for your attention.

