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Fredholm integral equations of the first kind

Given the continuous smooth kernel K(s,t) and the (measured)
data g(s), the aim is to find the (source) function f(t) such that

g(s) = // K(s, t)f(£)dt.

Fredholm integral has smoothing property, i.e. high frequency
components in g are dampened compared to f.

Example: Barcode reading

(I | (1|

sharp barcode Gaussian blur blurred barcode sharp barcode Gaussian blur blurred barcode
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Discretization
Consider a discretization of the integral equation in the form of
linear inverse problem

Ax =~ b, b= bexact + bnoisej Ac Ran, x € ]Rn7

where vector b"°'s¢

> is an unknown perturbation representing rounding and
discretization error, and/or noise with physical sources,

» resembles white noise, i.e., it has flat frequency characteristics,
> anoise” < HbexactH ]

Aim is to approximate x®t = Af pexact,

Remark

» A dampens high frequencies

» AT amplifies high frequencies
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Noise amplification
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Hansen: Regularization Tools
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Noise amplification

The components of the "naive” solution

naive 1 ! J'Tbexact ! u b
xve=afp= N T Y vj
j=1 oj j=1 aj
xexact amplified noise
exact noise
N oulb ulb
+ - v+ E -V
j=1+1 o ! j=t+1 o;
xexact amplified noise

corresponding to small o;'s are dominated by amplified noise.

Regularization is used to suppress the effect of amplified noise while
extracting as much information about the solution as possible.
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Overview of regularization methods

Spectral filtering (e.g., truncated SVD, Tikhonov): suitable
for solving small ill-posed problems.

Projection methods (e.g., LSQR): suitable for solving large
ill-posed problems. The size of projection space represents a
regularization parameter [Bjorck - 88].

Hybrid methods: combination of outer iterative regularization
with a spectral filtering of the projected small problem, see e.g.,
[Chung, Nagy, O'Leary - 08], [Kilmer, Hansen, Espafiol - 06],
[Kilmer, O'Leary - 01], [O'Leary, Simmons - 81].
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Denoising

Suppose we have an estimate of h"°'*¢ available. Subtract the
estimate b"°*¢ and solve transformed system

Ax ~ bdenoised where bdenoised —bh— Bnoise
~ s = .

In practice, the aim is to
> decrease the relative noise level in the right-hand side
and/or

> make the spectral properties of noise more favorable —
dampen high frequencies.
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Basic algorithm

Golub-Kahan iterative bidiagonalization (GK)

input: A, b;
define: wo =0, s; = b/[1, where 51 = ||b]|;
for k=1,2,...
apwi = AT s — Bewi—r, [Iwil| =1,
Br+15k+1 = Awg — sk, [sk+1ll =1,

until o = 0 or Biy1 =0, or until k = n.

After k steps, GK produces:

» orthonormal vectors sy, ..., Ski1,
» orthonormal vectors w, ..., wg,
» normalization coefficients ay,...,ak and B1, ..., Bk+1-
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Noise revealing in Golub-Kahan bidiagonalization
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[Hn&tynkovd, Plesinger, Strakos - 09]
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Noise propagation in Golub-Kahan bidiagonalization

Deflne Sexact — bexact/ﬁ n0|se — bnmse/ﬁ1 and for k — 1 2

T
agwi = A’ s — Brwi—1,
exact exact
Bk+15k+1 = AWk — Oéksk
noise noise
Br+1Sk41 = — QS

The troublesome high-frequency noise is confined to s,r(‘°ise. Thus

noise

noise __ Ak noise _ k n0|se _ k j
T T e H BJH H LB B

Br+1

i.e., the study of white noise propagation reduces to the study of
the cumulative amplification ratio

Gt

[Hn&tynkovd, Plesinger, Strakos - 09]
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Properties of the amplification ratio
GK for spectral components

ar(VTwie) = (U s) = Bi(VT i)
,3k+1(UT5k+1) = Z(VTWk) — ak(UTsk) .

Vectors UTs, and VT wy exhibit dominance in the same
components, therefore the orthogonality between si,1 and s
cannot be achieved without significant cancellation, and

Brs1 < a. Since the dominance in UTs, and VT w_1 is shifted
by one component, ay &~ [.

k Q;

Therefore, the cumulative amplification ratio p[l = HFI o
J

average rapidly grows until it reaches the noise revealing iteration

_ -1
Knoise = argmaxp, .
k

At this step s;;1 is dominated by sp9'$e.
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Noise revealing
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Examples

phillips(400)
10° — sy
— lIs°*|
10*
107
10°
10"
10°
20 40 60 80 20 40 60 80
K k
—lIsg
— lisp™ I
10*
107
107
10"
10°
10 20 30 40 10 20 30 40
k k

16/26



Outline

Denoising based on noise revealing

17/26



Denoising by noise revealing

Recall .
noise k —1 brerse
Sk+1 =(-1) P W’
which yields _
b = ||bl|(—1)" prsi

At step k = Knoise, Sk+1 is dominated by s,r(‘j’r"ie. Take

b ~ B¢ = ||b]|(~1)* ks,

i.e., estimate noise by properly scaled noise revealing left
bidiagonalization vector.

Define the denoised right-hand side

bdenoised = ph— '[_)noise
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Properties of denoised right-hand side
It was shown in [Kubinova - 13] that from

pdenoised _ p Enoise’ phoise _ ||b”(—1)kpk5k+1

and from
b = ] [s1 — 5] = ] [s1 — (~1)prsfs]

we get
bdenoised _ pexact _ _HbH(_ ) kslf)flct~
Consequently
» remaining noise is smooth - high frequency part of noise is not
present;

» new relative noise level is

Hbdenoised o bexact” . 5 5
~ exact||
HbexactH ~ pkHsk-‘rl H ~A P~ 5noise‘
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Regularization effect of denoising
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Quantitative properties
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Comparison with other methods
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Denoising for colored noise

Generally:

High-frequency noise is considered the more convenient alternative
— distinguish easier between low-frequency exact data and noise.
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Observation:
For low-frequency noise, [|s&@<t|| + ||snoise|| 5 1.
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Conclusion
Method at a glance
» Golub-Kahan iterative bidiagonalization
T

» find noise revealing iteration argmaxp;1 = argmax Hl-‘_l :
k k -J= /Bj+1

» subtract properly scaled noise revealing left bidiagonalization
vector from b, i.e., bdenoised — b ||p||(—1)*prski1

Remarks

> the method is extremely cheap

> loss of orthogonality delays noise revealing

Open questions

> how to solve Ax = pden°ised fyrther regularization
> relation to other methods
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Thank you for your attention.
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