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Any nonincreasing convergence curve is possible for GMRES
[Greenbaum & Pták & Strakoš, 1996] showed additionally that this is
possible with any nonzero spectrum

A parametrization was given of all matrices with a prescribed
spectrum and right-hand sides generating a prescribed convergence
curve [Arioli & Pták & Strakoš, 1998]

Any Ritz-value behavior is possible for Arnoldi and for GMRES [DT

& Meurant, 2012] showed that any Ritz values can be prescribed in
Arnoldi processes

A parametrization to see this was given in [DT & Meurant, 2013]:
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To prescribe Ritz values and residual norms in GMRES [DT & Meurant
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The parametrization for full GMRES

To prescribe Ritz values and residual norms in GMRES [DT & Meurant

2014]:

Choose a unitary matrix V and put b = V e1 and

A = V HV ∗, H upper Hessenberg.

To force the desired eigenvalues, H will be of the form

H = U−1CU, U nonsingular upper triangular,

where C is the companion matrix for the prescribed spectrum.

Let

U =

[

gT

0 T

]
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The parametrization for full GMRES

To force the residual norm sequence f(0) ≥ · · · ≥ f(n − 1) > 0,
the first row gT of U has entries

g1 =
1

f(0)
, gk =

√

1

f(k − 1)2
−

1

f(k − 2)2
, k = 2, . . . , n.
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the remaining entries of U must satisfy

k
∏

i=1

(λ − ρ
(k)
i ) = gk+1 +

k
∑

i=1

ti,kλi.

Prescribing residual norms in restarted GMRES was considered in the
paper [Vecharinsky & Langou 2011].
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Results for restarted GMRES

The paper assumes a special situation in GMRES(m):

1 During every restart cycle, all residual norms stagnate except for the
very last iteration inside the cycle.

2 In this very last iteration it is assumed that the residual norm is
strictly decreasing.
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Results for restarted GMRES

The paper assumes a special situation in GMRES(m):

1 During every restart cycle, all residual norms stagnate except for the
very last iteration inside the cycle.

2 In this very last iteration it is assumed that the residual norm is
strictly decreasing.

Theorem 1 [Vecharinsky & Langou 2011]. Let k positive decreasing numbers

f(0) > f(1) > · · · > f(k − 1) > 0,

and n complex nonzero numbers λ1, . . . , λn be given. With the
assumptions 1. and 2. above, let the very last residual at the end of the
jth cycle be denoted by r̄j . If km < n, then:

There exists a matrix A of order n with a right hand side such that
GMRES(m) generates residual norms at the end of cycles satisfying

‖r̄i‖ = f(i), i = 0, 1, . . . , k.

The matrix A has the eigenvalues λ1, . . . , λn.
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linear systems generating Hessenberg matrices with prescribed
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Residual norms inside cycles

To prescribe residual norms inside restart cycles we will construct
linear systems generating Hessenberg matrices with prescribed
entries:

To generate in the kth cycle the residual norms

f (k)(0) ≥ · · · ≥ f (k)(m),

we choose the kth Hessenberg matrix of dimension (m + 1) × m is
to be of the form

Ĥ(k)
m =

[

g
(k)
1 . . . g

(k)
m+1

0 T
(k)
m

]−1
[

0
Im

]

[

g
(k)
1 . . . g

(k)
m

0 T
(k)
m−1

]

,

where

g
(k)
1 = 1/(f (k)(0))2, g

(k)
i =

√

1

(f(i − 1)(k))2
−

1

(f(i − 2)(k))2
.
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(1)∗
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(1)

m+1 = Im+1.

To generate Ĥ
(1)
m we need

H

[

Im

0

]

=

[

Ĥ
(1)
m

0

]

.

The m iterations of the second cycle should give the Arnoldi
decomposition

AV (2)
m = V

(2)
m+1Ĥ(2)

m , V
(2)∗

m+1V
(2)

m+1 = Im+1.

10



Comparison of the first two cycles

If r
(1)
m is the residual vector at the end of the first cycle, then

V
(2)

m+1e1 =
r

(1)
m

‖r
(1)
m ‖

≡ V
(1)

m+1z(1).
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(1)
0 ‖ ≥ ‖r
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1 ‖ ≥ · · · ≥ ‖r(1)

m ‖

and we define

g
(1)
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(1)
0 ‖2, g

(1)
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√
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−
1
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(1)
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0 , . . . , g(1)
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(1)
m ei, i = 1, . . . , m.

11



Comparison of the first two cycles

If r
(1)
m is the residual vector at the end of the first cycle, then

V
(2)

m+1e1 =
r

(1)
m

‖r
(1)
m ‖

≡ V
(1)

m+1z(1).

Lemma 1. If the initial cycle generates residual norms

‖r
(1)
0 ‖ ≥ ‖r

(1)
1 ‖ ≥ · · · ≥ ‖r(1)

m ‖

and we define
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(1)
0 = 1/‖r

(1)
0 ‖2, g

(1)
i =

√

1

‖r
(1)
i−1‖2

−
1

‖r
(1)
i−2‖2

, g(1) ≡ [g
(1)
0 , . . . , g(1)

m ]T ,

then z(1) = g(1) and g(1) ⊥ Ĥ
(1)
m ei, i = 1, . . . , m.

Here is a relation between the small Hessenberg matrix Ĥ
(2)
m of the

second cycle and the large Hessenberg matrix H in the matrix
A = V HV ∗ which we construct:
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Comparison of the first two cycles

Lemma 2. The matrix Ĥ
(2)
m is the Hessenberg matrix generated by m

iterations of the Arnoldi process with input H and
[

g(1)T 0
]T

:

HZm = Zm+1Ĥ(2)
m , Zm+1e1 =

[

g(1)

0

]

, Z∗
m+1Zm+1 = Im+1. (1)
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Comparison of the first two cycles

Lemma 2. The matrix Ĥ
(2)
m is the Hessenberg matrix generated by m

iterations of the Arnoldi process with input H and
[

g(1)T 0
]T

:

HZm = Zm+1Ĥ(2)
m , Zm+1e1 =

[

g(1)

0

]

, Z∗
m+1Zm+1 = Im+1. (1)

Can we construct the columns m + 1, m + 2, . . . , 2m of H such that (1)

is satisfied with a prescribed Hessenberg matrix Ĥ
(2)
m an "inverse" Arnoldi

problem? This will depend on the number of trailing zeroes in g(1)

because the Arnoldi decomposition has the structure

H

∗

Zm

∗

=

Zm+1

∗

Ĥ
(2)
m

∗

.
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Stagnation at the end of cycles

Because g
(1)
i =

√

1

‖r
(1)

i−1
‖2

− 1

‖r
(1)

i−2
‖2

, with j stagnation steps at the end

of the first restart cycle, the trailing j entries of g(1), are zero.

Then the Arnoldi decomposition HZm = Zm+1Ĥ
(2)
m looks like

H

m

∗

Zm

j

∗

=

Zm+1

j

∗

Ĥ
(2)
m

j

∗

.

The first j columns of the Hessenberg matrix of the second cycle Ĥ
(2)
m

are fully determined by Ĥ
(1)
m and g(1) - they cannot be prescribed.
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Stagnation at the end of cycles

Lemma 3 If the last j residual norms stagnate in the initial cycle, i.e.

‖r
(1)
0 ‖ ≥ ‖r

(1)
1 ‖ ≥ · · · ≥ ‖r

(1)
m−j−1‖ > ‖r

(1)
m−j‖ = · · · = ‖r(1)

m ‖

then the first row of Ĥ
(2)
m is zero on positions one till j. Proof: For i < j,

eT
1

[

Ĥ
(2)
m

0

]

ei = eT
1

[

Z∗
m+1HZm

0

]

ei

=
[

g(1)∗
0

]

HZmei = g(1)∗
Ĥ(1)

m

[

Zmei

0

]

= 0.
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=
[

g(1)∗
0

]

HZmei = g(1)∗
Ĥ(1)
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[

Zmei

0
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Corollary If the last j residual norms stagnate in the initial cycle, i.e.

‖r
(1)
0 ‖ ≥ ‖r

(1)
1 ‖ ≥ · · · ≥ ‖r

(1)
m−j−1‖ > ‖r

(1)
m−j‖ = · · · = ‖r(1)

m ‖

then the first j residual norms stagnate in the second cycle,

‖r
(2)
0 ‖ = ‖r

(2)
1 ‖ = · · · = ‖r

(2)
j ‖.

14



Stagnation at the end of cycles

Hence stagnation in one cycle is literally mirrored in the next cycle and
we cannot prescribe any residual norm history!
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Prescribed Hessenberg matrices in GMRES(m)

If we assume no restart cycles stagnate in their last iterations, we can try
to solve the "inverse" Arnoldi problem:

HZm = Zm+1Ĥ(2)
m , Zm+1e1 =

[

g(1)

0

]

, Z∗
m+1Zm+1 = Im+1.
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HZm = Zm+1Ĥ(2)
m , Zm+1e1 =

[

g(1)

0
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, Z∗
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This can be done in many ways, depending on the choice of columns of
Zm+1 (the Arnoldi vectors). Let us consider the most straightforward,
"canonical" choice
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0
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0
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If we assume no restart cycles stagnate in their last iterations, we can try
to solve the "inverse" Arnoldi problem:

HZm = Zm+1Ĥ(2)
m , Zm+1e1 =

[

g(1)

0

]

, Z∗
m+1Zm+1 = Im+1.

This can be done in many ways, depending on the choice of columns of
Zm+1 (the Arnoldi vectors). Let us consider the most straightforward,
"canonical" choice

Zm+1 ≡







g(1)

0
...

0
Im

0






.

Equating the subsequent columns in HZm = Zm+1Ĥ
(2)
m gives explicit

values for columns m + 1 till 2m of H and leads to:
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Prescribed Hessenberg matrices in GMRES(m)

Theorem 2 [DT & Meurant 2014?] Let A ∈ C
n×n and b ∈ C

n and let for
km < n,

Ĥ(1)
m , . . . , Ĥ(k)

m ∈ C
(m+1)×m

be k given unreduced upper Hessenberg matrices with positive
subdiagonal and nonsingular leading m × m principal submatrix. Then
the kth cycle of GMRES(m) applied to A and b generates the
Hessenberg matrix

Ĥ(k)
m

if
A = V HV ∗, b = V e1,

where V is unitary, H is upper Hessenberg and the columns
(k − 1)m + 1 till km corresponding to the kth cycle are of the form:

17



Prescribed Hessenberg matrices in GMRES(m)

H
[

e(k−1)m+1, . . . , ekm

]

=







































γ(1)g(1)ĥT
(k)

...
...

γ(k−1)g(k−1)ĥT
(k)

t(k) g(k)ĥT
(k)

0
[

0 Im

]

Ĥ
(k)
m

[

0
Im−1

]

0 0







































, where

ĥT
(k) = eT

1 Ĥ
(k)
m

[

0
Im−1

]

, γ(ℓ) = (
∏k−1

i=ℓ+1 g
(i−1)
1 ) and

t(k) =
1

ζ
(k−1)
m+1

[

(h
(k)
1,1z(k−1) − Ĥ(k−1)

m [ζ
(k−1)
1 , . . . , ζ(k−1)

m ]T ), h
(k)
2,1

]T

.
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Prescribed Hessenberg matrices in GMRES(m)

Thus we know how to generate, by the right choice of columns of H ,
arbitrary Hessenberg matrices during all restarts. Therefore we may
prescribe not only GMRES residual norms inside cycles, but also Ritz
values and possibly other values (singular values [Ernst & Eiermann 2001],
harmonic Ritz values, etc. ...).
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Prescribed Hessenberg matrices in GMRES(m)

Thus we know how to generate, by the right choice of columns of H ,
arbitrary Hessenberg matrices during all restarts. Therefore we may
prescribe not only GMRES residual norms inside cycles, but also Ritz
values and possibly other values (singular values [Ernst & Eiermann 2001],
harmonic Ritz values, etc. ...).

Remark: Prescribing k restarts under the condition km < n means that
in the parametrization

A = V HV ∗, b = ‖b‖V e1,

we put conditions on the first km < n columns of H only. The last
column can be chosen arbitrarily. It can be checked (see, e.g., [Parlett &

Strang 2008], that any nonzero spectrum of A is possible with an
appropriate choice of the last column.
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Other constructions

We constructed matrices and right-hand sides yielding a sequence of
prescribed Hessenberg matrices if the GMRES process is restarted.

The construction found the entries of H using the "canonical"
choice

Zm+1 ≡







g(1)

0
...

0
Im

0







of Zm+1 in HZm = Zm+1Ĥ
(2)
m .
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Other constructions

We constructed matrices and right-hand sides yielding a sequence of
prescribed Hessenberg matrices if the GMRES process is restarted.

The construction found the entries of H using the "canonical"
choice

Zm+1 ≡







g(1)

0
...

0
Im

0







of Zm+1 in HZm = Zm+1Ĥ
(2)
m .

Other choices lead to different parametrizations, e.g.

H̃ =





Im+1 Ĥ
(1)
m S0 0

0 S1 0
0 0 In−2m−1





−1

H





Im+1 Ĥ
(1)
m S0 0

0 S1 0
0 0 In−2m−1



 ,

where S1 is nonsingular upper triangular such that S∗
1 S1 − Im is

positive definite and S0 satisfies (Ĥ
(1)
m S0)∗Ĥ

(1)
m S0 = S∗

1S1 − Im.
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Relation with full GMRES

All constructions give the same behavior of GMRES(m) (it
generates the same small Hessenberg matrices)

but obviously not the same behavior if full GMRES is applied
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All constructions give the same behavior of GMRES(m) (it
generates the same small Hessenberg matrices)

but obviously not the same behavior if full GMRES is applied

Theorem 3 [DT & Meurant 2014?] Consider the linear system constructed
in Theorem 2 using the "canonical" basis for Zm+1. The residual norms
generated when GMRES(m) is applied to this system are the same as
when full GMRES is applied to this system.

This means the linear systems in Theorem 2 represent the optimal
situation for GMRES(m), where restarting is as efficient as running full
GMRES.
Equivalently, we constructed systems where full GMRES can be
computed with short recurrences ...
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Relation with full GMRES

The linear systems in Theorem 2 also enable to construct situations
where GMRES(m) converges faster than GMRES(m+i) for some i > 0:
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Example: We construct a linear system with

A ∈ R
16×16, b ∈ R

16

such that GMRES(5) generates the prescribed residual norms

[

‖r
(1)
0 ‖, ‖r

(1)
1 ‖, . . . , ‖r

(1)
5 ‖

]

= [1, 0.7, 0.4, 0.1, 0.07, 0.04]

[

‖r
(2)
0 ‖, ‖r

(2)
1 ‖, . . . , ‖r

(2)
5 ‖

]

= [0.04, 0.01, 0.007, 0.004, 0.001]

[

‖r
(3)
0 ‖, ‖r

(3)
1 ‖, . . . , ‖r

(3)
5 ‖

]

= [0.001, 7 · 10−4, 4 · 10−4, 10−4, 7 · 10−5]
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We constructed short-recurrence but full GMRES processes

Questions for future work include:

Can systems be constructed generating prescribed residual
norms for both GMRES(m) and GMRES(m+i)?

What is the relation between our constructions and
components of b in the eigenspaces ?

Are there consequences for restarted Arnoldi ?

Can the sufficiency of shorter restart parameters be detected
during the GMRES(m) process ?

What can be said for GMRES(m) after iteration number n ?
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Thank you for your attention!
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