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Abstract

Model reduction in linear dynamical systems can be formu-
lated (in a simplified form) as an approximation of the trans-
fer function T (λ) = c∗(λI − A)−1b using the reduced order
matrices and vectors An, In, cn, and bn. Approximation of
the quadratic form c∗A−1b can seemingly be interpreted as
using the previous approach with taking λ = 0. This, how-
ever, does not lead to efficient numerical algorithms for the
second problem. We give a short overview of the exist-
ing approaches with emphasizing their computational effi-
ciency and numerical stability properties.

Model reduction and transfer function

Consider a linear dynamical system

E
dz

dt
= Az(t) + b u(t),

y(t) = c∗z(t) + d u(t),

where A ∈ RN×N , E ∈ RN×N , b ∈ RN , c ∈ RN , d ∈ R
are given, z(t) ∈ RN represents the inner variables of the
system, u(t) the one-dimensional input (control), and y(t)
the one-dimensional output. Typically, N is very large, and
the basic idea of model reduction is to find an approxima-
tion by a system of the same type, but with the state-space
dimension N reduced to a much smaller n. For simplicity,
set d = 0 and E = I. The above description can then be
replaced by

T (λ) = c∗(λI − A)−1b, λ ∈ C, (1)

where T (λ) is called the transfer function. In brief, the model
reduction problem is to find An, In, cn, and bn such that

Tn(λ) = c∗n (λIn − An)−1bn, λ ∈ C,

closely approximates (in an appropriate sense) T (λ) within
a given frequency range λ ∈ CA ⊂ C; see [1].

A more general case

The problem of finding efficient numerical approximations
to (1) arises in many applications beyond linear dynamical
systems. A more general case can be written as

c∗F (A) b,

where F is a given function so that the matrix function F (A)
is defined. The particular case b = c and F (A) = (λI−A)−1
is of a great importance in theory and practice of iterative
computations, in physical chemistry and solid state physics.

Projections onto Krylov subspaces

Model reduction of linear dynamical systems based on pro-
jections onto Krylov subspaces is linked with local approxi-
mations of T (λ). First consider the expansion of (1) around
infinity, i.e.

T (λ) = λ−1c∗(I − λ−1A)−1b
= λ−1(c∗b) + λ−2(c∗Ab) + · · · + λ−2n(c∗A2n−1 b) + . . . .

A reduced model of order n that matches the first 2n terms
in the above expansion is known as the minimal partial re-
alization.
One can also approximate (and therefore expand) T (λ) in
the neighbourhood of some finite λ0 ∈ C. For the simplified
case λ0 = 0 we get the expansion

−T (λ) = c∗A−1(I − λA−1)−1b
= c∗A−1 b + λ(c∗A−2 b) + · · · + λ2n−1(c∗A−2n b) + . . .

(see [3, 6]). It is important to note that with the transfer
function approximated in the neighbourhood of the origin,
associated numerical methods that compute the model re-
duction are based on matching moments with the powers
of A−1. The computation therefore involves the solution of
the linear algebraic systems with the matrix A. In compari-
son, in the model reduction based on the expansion of T (λ)
around infinity, the computation of the approximation needs
only much cheaper matrix-vector multiplication with the ma-
trix A.

Estimates in Quadratic forms

The transfer function T (λ) gives, apart from the sign, for
λ = 0 the quantity

c∗A−1b (2)

which in signal processing is called the scattering ampli-
tude. Many applications require the approximation of this
quantity. We will demonstrate that the requirements of effi-
ciency and numerical stability of (finite precision) computa-
tions must always be taken into account. In particular, an
approximation to the scalar value (2) cannot be efficiently
computed by an application of the methods developed for
approximation of the transfer function Tn(λ). In spite of
existing links, the task of computing an efficient and nu-
merically stable approximation to (2) represents a different
mathematical problem, and it requires a different approach
from approximating the transfer function.
One can also suggest that c∗A−1b = c∗x, where x solves
the linear system Ax = b. Therefore c∗x can, in principle,
be approximated by computing c∗xn, where xn is the nth ap-
proximation generated by a Krylov subspace method. A po-
tentional user of this approach should, however, be aware
that the approximation of c∗x by the explicit numerical com-
putation of c∗xn can be highly inefficient even in the HPD
case due to the (hidden) effects of rounding errors.

HPD case and the CG method

For A Hermitian and positive definite, and c = b we have
b∗A−1b = ‖x‖2A . In CG with x0 = 0 it holds that

‖x‖2A = bTxn + ‖x− xn‖2A,

‖x‖2A =

n−1∑
j=0

αj‖rj‖2 + ‖x− xn‖2A.

Both formulas for approximating ‖x‖2A are mathematically
equivalent, but in finite precision computations, they pro-
duce different results.

General case and comparison of methods

Similar phenomenon can be seen for non-Hermitian A
and/or b 6= c, and the BiCG method. Here, the approxi-
mation is based on an analogous formula,

c∗A−1b = ξBn + s∗nA
−1rn , ξBn ≡

n−1∑
j=0

αjs
∗
jrj.

One can also use hybrid BiCG methods like CGS or
BiCGStab(`). While hybrid methods can be better than
BiCG when approximating the solution of Ax = b, for ap-
proximating c∗A−1b BiCG is the clear winner in most cases.
Indeed, in hybrid BiCG methods the BiCG coefficients are
usually computed with a much lower accuracy than in BiCG.

The method with long recurrences like the Arnoldi al-
gorithm can be more numerically stable but require more
memory and computations, giving

c∗A−1b ≈ ξAn ≡ ‖b‖ c∗VnH−1n e1 ,

where Hn ∈ Cn×n and Vn ∈ CN×n are matrices from the
Arnoldi algorithm.

In the experiments, we used A, b and c that arise in the
problem of diffraction of light on periodic structures solved
using the RCWA method; see [2].

Conclusions

There are several players in the game. Methods based
on biorthogonality and short recurrences (like BiCG,
BiCGStab, . . . ) match at the nth step 2n moments c∗b,
c∗Ab, . . . , c∗A2n−1b (analogously to the CG case). One
should, however, take into account that the biorthogonal-
ity uses an auxiliary space which can be very difficult to
adjust to an optimal performance of the method. Meth-
ods based on orthogonality and long recurrences (like
Arnoldi etc.) match at the nth step only n moments c∗b,
c∗Ab, . . . , c∗An−1b, but there is no auxiliary space involved
and, moreover, the methods benefit from much better sta-
bility properties. In conclusion, there is no universal winner.
Efficiency of methods depend on the particular problem.
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