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Saddle point problems

We consider a saddle point problem with the symmetric 2 x 2 block form
A B\ [z\ _(f
BT o)\y)  \o)"

» A is a square n X n nonsingular (symmetric positive definite) matrix,

» B is a rectangular n x m matrix of (full column) rank m.

Applications: mixed finite element approximations, weighted least squares,
constrained optimization, computational fluid dynamics, electromagnetism etc.
[Benzi, Golub and Liesen, 2005], [EIman, Silvester, Wathen, 2005]. For the
updated list of applications leading to saddle point problems contact [Benzi].
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Iterative solution of saddle point problems

1. segregated approach: outer iteration for solving the reduced Schur
complement or null-space projected system;

2. coupled approach with block preconditioning: iteration scheme for
solving the preconditioned system;

3. rounding errors in floating point arithmetic: numerical stability of the
solver

Numerous solution schemes: inexact Uzawa algorithms, inexact null-space
methods, inner-outer iteration methods, two-stage iteration processes,
multilevel or multigrid methods, domain decomposition methods

Numerous preconditioning techniques and schemes: block diagonal
preconditioners, block triangular preconditioners, constraint preconditioning,
Hermitian /skew-Hermitian preconditioning and other splittings, combination
preconditioning

Numerous iterative solvers: conjugate gradient (CG) method, MINRES,
GMRES, flexible GMRES, GCR, BiCG, BiCGSTAB, ...
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Numerical experiments: a small model example

A = tridiag(1,4,1) € R'°*'%° " B = rand(100,20), f = rand(100, 1),
w(A) = [|A]|l - |[A7"|| = 5.9990 - 0.4998 ~ 2.9983,
w(B) = |B|| - | BT|| = 7.1695 - 0.4603 ~ 3.3001.



Schur complement reduction method

» Compute y as a solution of the Schur complement system
BTA'By=BTA7'f,
» compute x as a solution of
Ax = f — By.

» Segregated vs. coupled approach: xj, and yj approximate solutions to x
and y, respectively.

> Inexact solution of systems with A: every computed solution @ of
Awu = b is interpreted as an exact solution of a perturbed system

(A+AA)a =b+ Ab, [|AA] < 7||A[], [|Ab] < 7[bll, Tr(A) < 1.



Iterative solution of the Schur complement system

choose yo, solve Axg = f — Byo

compute ay, and piy)

Ye+1 = Yk + Otkpiy)

solve Ap\*) = —Bp¥)

back-substitution: outer

. iterati
Az =xp + Oékpgf), inner iteration
B: solve Azky1 = f — Byii1, iteration

C: solve Aup, = f — Az, — Byg+1,

Tkt1 = Tk + Uk-

A =1l BT



Accuracy in the saddle point system

I~ Az — Byl < L 151 + 1BV

| = BTay —r| < (O‘L"(())HA B + [BIY:).

Yie = max{||ly:|| | =0,1,...,k}.

Back-substitution scheme a1 | o

A:  Generic update
Tht1 = Tk + QP

B: Direct substitution
Thp1 = AT — Byrs1) additional

C:  Corrected dir. subst. system with A
Tpi1 =z + A7H(f — Az — Byry1)

(z) T u

—BT"A ' f+ B"A By, = —B"x;, — BTAT(f — Az — Byy)



Generic update: 1 = o3 + ozkpl(f’)
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Direct substitution: z3.1 = A~ (f — Bypi1)
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Corrected direct substitution: x4 = x5, + A~ (f — Az, — Bypy1)
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Null-space projection method

» compute € N(BT) as a solution of the projected system
(I -INA({I -z = —1I)f,
> compute y as a solution of the least squares problem
By~ f — Ax,

I = B(BTB)™'B7 is the orthogonal projector onto R(B).
» Schemes with the inexact solution of least squares with B. Every

computed approximate solution © of a least squares problem Bv = c is
interpreted as an exact solution of a perturbed least squares

(B+AB)tv = c+ Ac, |ABJ < 7||BJ|, ||Ac|| < 7|l¢||, Tr(B) < 1.



Null-space

projection method

choose zg, solve Byo ~ f — Axo

compute ay, and p\* € N(BT)

Tk4+1 = Tk + Qkpy,

(z)

(@)

W) g (@) (@)
Tk

solve Bp,, — arAp;,

back-substitution:

A: g1 =y +py,
B: solve Byy+1 ~ f — Axk41,
C: solve Bvy, =~ f — Axk41 — Byk,
Yk+1 = Yk + Vk.
(=)

Tag1 = Th akAp(z) Bp,(cy)

inner
iteration

outer
iteration



Accuracy in the saddle point system

I = Az = By = < SEDRD 111+ 4160,

- BTaul < 2O B

X = max{||z;]| |1 =0,1,...,k}.

Back-substitution scheme as
A: Generic update
Yk+1 = Yk -l-p(y) “
B: Direct substitution -
Yk4+1 = BJr(f — AZEk+1) additional least
C: Corrected dir. subst. U square with B
Yrt1 = yk + B (f — Azp1 — Byy)




Generic update: yx11 = Yk +P;(€y)
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Direct substitution: i1 = BT (f — Azjyq)
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Corrected direct substitution: ypr1 = yr + BT (f — Azpr1 — Byg)
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Stationary iterative methods

» A=Az =b, M- N
> A: M:Ek.H :Nl'k+b

B: Zpt1 = xx + MT(b— Axy)

> Inexact solution of systems with M: every computed solution 7 of
My = z is interpreted as an exact solution of a perturbed system

M+AM)y =z, [[AM| < T[M]l, Th(M) <1



Accuracy of the computed approximate solution

A Mazxpyr =Nz +b

|£k11 — || <r M M| ] ]
llz|l
B Ty =k + M H(b— Axy)
| MM + INT) [ ]

]|

[£r-+1 — ]

<O

new_value=old_value+small_correction



Two-stage iterative methods

M1$k+1/2 = Nz + b, A=M; -M
Moz = Nogpp1o+b, A=Mz— N

Typ1/e = Tk + My (b— Axy)
Thil = Tpy1/2 + M;l(b — Axpy1/2)
<~
Tppr = xp + (M7 H MG — MGTAMTY) (b — Azxy)
=a + (T + M3 "N)MT (b — Azy)
=z + M5 (T + NoMTH (b — Axy)

MM + IV ] ]

<O Bl




Preconditioning of saddle point problems

A symmetric indefinite, P positive definite

— A B ~ _ T
A= (B B)wponrn

(RTAR) R (g) =R (g)

R-TAR™! is symmetric indefinite!



Symmetric indefinite or nonsymmetric preconditioner

P symmetric indefinite or nonsymmetric

()7 (9
w7 ()-()

P-1A and AP~ ! are nonsymmetric!



Schur complement approach with indefinite preconditioner

(o 0) () =) ™= (ar e -)

L I 0
AP = ((1— S)BT A~ s)

S =BTA'B, AP~! nonsymmetric but diagonalizable and it
has a 'nice’ spectrum!

o(APY) c {1}uo(BTA'BT)

[Durazzi, Ruggiero 2003], [Fortin, El-Maliki, 20097]



Krylov method with the preconditioner: basic properties

(o) o= (a) o= (32500)
Yo PRV s0 )’ k+1 Y — Ykt1
_ (A B Th+1
Tk+1 = BT 0 Ykt1
T 0 =T 0
0— kE+1 —
S0 " Sk+1
=

A1+ By = f

O



Preconditioned CG method: saddle point problem and indefinite
preconditioner

T -1 _ S
T Py =0,7=0,...,k
Yk+1 is an iterate from CG applied to the Schur complement system
BTA'By = BTA-1f1
satisfying

] ly — yk+1HBTAle =
My e+ Ky 1 (BTA—1B,BT A-1f) ly — UHBTA—lB



Preconditioned CG algorithm

Br =

P (O p\ _ (—AT'BpY,
W | =P B\ | = )
DPry1 Sk+1 Dy, Pri1

(k%K)
(Apg,pi)

A =

—1
Zk41 = P T4

B = (Pk41:2641)
(rk>2K)

Pk+1 = Zk+1 + BrDr



Generic update: a1 = x), + akpl(f) with pgf) = _A-1ppYW

esidual nom I1:Ax By I
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Saddle point problem and indefinite constraint preconditioner

(o 0) ()= () 7= (o 0)

. (AI-T)+1 (A—I)B(B"B)™
AP = ( 0 I )

I = B(BYB)™*B” - orth. projector onto span(B)

[Luksan, VIgek, 1998], [Gould, Keller, Wathen 2000]
[Perugia, Simoncini, Arioli, 1999], [R, Simoncini, 2002]



Indefinite constraint preconditioner: spectral properties

AP~! nonsymmetric and non-diagonalizable!
but it has a 'nice’ spectrum:

oc(APY) c {1}Uo(A(I —1I) + II)
C {1} Ua((I - A - II)) — {0}

and only 2 by 2 Jordan blocks!

[LukZan, Vigek 1998], [Gould, Wathen, Keller, 1999], [Perugia, Simoncini 1999]



Krylov method with the constraint preconditioner: basic properties

()= (8) = (5500)
_(fY_( A B Th1

Tk+1 = 0 BT o Yrt

ro = (300) N (3/<8L1>

= BT(z —x141) =0
= 341 € Null(BT)!



Preconditioned CG method: error norm

rE P lr;=0,7=0,...k
ZTk+1 is an iterate from CG applied to
(I — A — )z = (I — TI)f!
satisfying

H.%' - karlHA - minue:r:o-l-span{(I—H)Sj} HHJ - UHA

[Luksan, VIZek 1998], [Gould, Wathen, Keller, 1999]



Preconditioned CG algorithm

o = ((0) 2 () (iii) , (iﬁ’;ﬁ)) = (e 20)/ (Api, pe)
)

()
Te41 = Tk — apA (p’(“y)> = (813-1) Zk1 = ’P*lrk_H
Py
Br = ((Skgl> ;P! (Skgl>)/((séc , P! (%)) Br = (rit1, 2e+1)/ (7k, 2k)

(x) ()
_ S
<pﬁf>1) -7 ( Hl) O (pl(cy) Prt1 = Zk+1 + Brpk
p P



Preconditioned CG method: residual norm

[ k41 — 2f} =0
but in general

Yk+1 7Y

which is reflected in

S
Il = H( o )H # 0!

but under appropriate scaling yes!



Preconditioned CG method: residual norm

Tk+1 — T
z —zpp1 = Pp1 ([ — DA — 1)) (z — 20)

Skt1 = Pr+1(A( —1II) + IT)so
o((I —IA(I —10)) ~ o(A(I — II) + I1)?

(1} € o((I — aA(I — 1)) — {0}

= el = H( k41 )H Lo



How to avoid misconvergence?

» Scaling by a constant o > 0 such that

{1} € conv(o((I — M)aA(I —1II)) — {0})

( O0)-0) = G 9)- ()
ve @ =Tl #0, O‘:((I—H)u,lA(J—H)u)!

» Scaling by a diagonal A — (diag(A))~*/? A(diag(A))~'/? often gives
what we want!

» Different direction vector p(”)

minimized!

so that ||7k+1]] = ||sk+1]] is locally

Yk+1 = Yk + (BTB)leTsk

[Braess, Deuflhard,Lipikov 1999], [Hribar, Gould, Nocedal, 1999], [Jiranek, R, 2008]



Numerical experiments: a small model example

A = tridiag(1, 4, 1) € R*?*, B =rand(25,5) € R*®®
f =rand(25,1) € R

o(A) C [2.0146,5.9854]

a=vr (5 D (D)

1/100 [0.0207,0.0586] U {1}
1/10 [0.2067,0.5856] U {1}
1/4 [0.5170,1.4641]

1 {1} U[2.0678, 5.8563]

4 {1} U [8.2712,23.4252)]
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Conclusions: segregated solution approach

» The accuracy measured by the residuals of the saddle point problem
depends on the choice of the back-substitution scheme [Jirdnek, R, 2008].
The schemes with (generic or corrected substitution) updates deliver
approximate solutions which satisfy either the first or second block
equation to working accuracy.

» Care must be taken when solving nonsymmetric systems [Jirdnek, R,
2008], all bounds of the limiting accuracy depend on the maximum norm
of computed iterates, cf. [Greenbaum 1994,1997], [Sleijpen, et al. 1994].

iteration number k



Conclusions: coupled approach with indefinite preconditioner

» Short-term recurrence methods are applicable for saddle point problems
with indefinite preconditioning at a cost comparable to that of symmetric
solvers. There is a tight connection between the simplified Bi-CG
algorithm and the classical CG.

> The convergence of CG applied to saddle point problem with indefinite
preconditioner for all right-hand side vectors is not guaranteed. For a
particular set of right-hand sides the convergence can be achieved by the
appropriate scaling of the saddle point problem.

» Since the maximum attainable accuracy depends heavily on the size of
computed residuals, a good scaling of the problems leads to approximate
solutions satisfying both two block equations to the working accuracy.



Thank you for your attention.

http://www.cs.cas.cz/~miro
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