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Assessing quality of computed solutions

Estimating sensitivity to perturbations

Monitor and control adaptive computational processes.

Here: A upper triangular (no loss of generality - computations
typically based on triangular decomposition)

Euclidean norm
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Cline, Conn, van Loan (1982); van Loan (1987)

Condition number estimation is part of standard libraries as LAPACK

Typically estimating lower bound for κ(A) (note that it is often
sufficient to have the estimates within a reasonable multiplicative
factor from the exact κ(A) - Demmel (1997))

1-norm: Hager (1984), Higham (1987, 1988, 1989, 1990) [175],
Higham, Tisseur (2000).

Incremental: Bischof (1990, 1991), Bischof, Pierce, Lewis (1990),
Bischof, Tang (1992); Ferng, Golub, Plemmons (1991); Pierce,
Plemmons (1992); 2-norm estimator based on pivoted QLP: Stewart
(1998); Duff, Vömel (2002)

See also other techniques in various applications: adaptive filters,
recursive least-squares, ACE for multilevel PDE solvers.
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Motivated by new mixed direct/inverse decomposition methods (see
Bru et al, 2008, 2010), we initially wondered whether presence of the
matrix inverse can improve incremental condition number estimation.

We did find more accurate estimation techniques but the theoretical
explanation is not straightforward. As a by-product we have some
enhanced insight in incremental condition number estimation methods
in the 2-norm.

An immediate application is dropping and pivoting in preconditioner
computation (see Bollhöfer, Saad (2001 - 2006)).

Starting point: the methods by Bischof (1990) (incremental condition
number estimation - ICE) and Duff, Vömel (2002) (incremental norm
estimation - INE).
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Estimation of σ−(R) is often harder than estimation of σ+(R). With
R−1 this can be circumvented using 1/σ+(R−1). However:

Theorem

Computing the inverse factor R−1 in addition to R does not give any

improvement for ICE: Let R be a nonsingular upper triangular matrix.

Then the ICE estimates of the singular values of R and R−1 satisfy

σC
−(R) = 1/σC

+(R−1).

The approximate left singular vectors y− and x+ corresponding to the ICE

estimates for R and R−1, respectively, satisfy

σC
−(R)xT

+ = yT
−R.
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R−1 satisfy 1/σN
+ (R−1) = σN

− (R) = σ−(R). Then the INE estimates of

the singular values related to the extended matrix satisfy

1/σN
+ (R̂−1) ≤ σN

− (R̂)

with equality if and only if v is collinear with the left singular vector

corresponding to the smallest singular value of R.

Rather technical in case the assumption is relaxed to

1/σN
+ (R−1) ≤ σN

− (R). Superiority of maximization does not apply

always, but might explain the name incremental norm estimation.
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An example showing the possible gap between the ICE and

INE estimates

0 20 40 60 80 100
10

−2

10
−1

10
0

10
1

Figure : INE estimation of the smallest singular value of the 1D Laplacians of size
one until hundred: INE with minimization (solid line), INE with maximization
(circles) and exact minimum singular values (crosses).
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Example: INE with maximization and exact smallest

singular value

50 55 60 65 70 75 80 85 90 95 100

10
−1.5

10
−1.4

10
−1.3

Figure : INE estimation of the smallest singular value of the 1D Laplacians of size
fifty until hundred (zoom of previous figure for INE with maximization and exact
minimum singular values).
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INE versus ICE

Theorem

Consider norm estimation of the extended matrix

R̂ =

[

R v
0 γ

]

,

let ICE and INE start with σ+ ≡ σC
+(R) = σN

+ (R); let y be the ICE

approximate LSV, z be the INE approximate RSV and w = Rz/σ+. We

have σN
+ (R̂) ≥ σC

+(R̂) if

(vT w)2 ≥ ρ1,

where ρ1 is the smaller root of the quadratic equation in (vT w)2,

(vT w)4 +

(

γ2 + (vT y)2

σ2
+

(

vT v − (vT y)2
)

− vT v − (vT y)2

)

(vT w)2

+ (vT y)2

(

γ2 + vT v

σ2
+

(

(vT y)2 − vT v
)

+ vT v

)

= 0.
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Example: ICE versus INE
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Figure : Value of ρ1 in dependence of (vT y)2 (x-axis) and γ2 (y-axis) with
σ+ = 1, ‖v‖2 = 0.1.
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Figure : Value of ρ1 in dependence of (vT y)2 (x-axis) and γ2 (y-axis) with
σ+ = 1, ‖v‖2 = 1.
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Figure : Value of ρ1 in dependence of (vT y)2 (x-axis) and γ2 (y-axis) with
σ+ = 1, ‖v‖2 = 10.
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Figure : Value of ρ1 in dependence of (vT y)2 (x-axis) and γ2 (y-axis) with
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Comparison 1

Example 1: 50 matrices A=rand(100,100) - rand(100,100), dimension 100,
colamd, R from the QR decomposition of A. (Bischof, 1990, Section 4).
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Figure : Ratio of estimate to real condition number for the 50 matrices in
example 1. Solid line: ICE (original), pluses: INE with inverse and using only
maximization, circles: INE (original), squares: INE with inverse and using only
minimization.
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Comparison 2

Example 2: 50 matrices A = UΣV T of size 100, prescribed condition
number κ choosing

Σ = diag(σ1, . . . , σ100), with σk = αk, 1 ≤ k ≤ 100, α = κ− 1

99 .

U and V are random unitary factors, R from the QR decomposition of A
with colamd, ( Bischof, 1990, Section 4, Test 2; Duff, Vömel, 2002,
Section 5, Table 5.4). With κ(A) = 10 we obtain:
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Comparison 3
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Figure : Ratio of estimate to real condition number for the 50 matrices in
example 2 with κ(A) = 100. Solid line: ICE (original), pluses: INE with inverse
and using only maximization, circles: INE (original), squares: INE with inverse
and using only minimization.
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Comparison 4
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Figure : Ratio of estimate to real condition number for the 50 matrices in
example 2 with κ(A) = 1000. Solid line: ICE (original), pluses: INE with inverse
and using only maximization, circles: INE (original), squares: INE with inverse
and using only minimization.
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Matrices from MatrixMarket
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Figure : Ratio of estimate to actual condition number for the 20 matrices from
the Matrix Market collection without column pivoting. Solid line: ICE (original),
pluses: INE with inverse and using only maximization, circles: INE (original),
squares: INE with inverse and using only minimization.
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Matrices from MatrixMarket
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Figure : Ratio of estimate to actual condition number for the 20 matrices from
the Matrix Market collection with column pivoting. Solid line: ICE (original),
pluses: INE with inverse and using only maximization, circles: INE (original),
squares: INE with inverse and using only minimization.
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Conclusions

The two main 2-norm incremental condition estimators are inherently
different - confirmed both theoretically and experimentally.

INE strategy using both the direct and inverse factor and
maximization only is a method of choice yielding a highly accurate
2-norm estimator.

Future work: block algorithm, using the estimator inside a incomplete
decomposition.

For more details see:

J. Duintjer Tebbens, M. Tůma: On Incremental Condition Estimators in the
2-Norm , Preprint NCCM/2013/15, submitted, May 2013.
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Last but not least

Thank you for your attention!
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