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Matrix condition number: an important quantity used in numerical linear
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r(A) = | All - |A7]
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Introduction: The Problem

Matrix condition number: an important quantity used in numerical linear
algebra. We consider square nonsingular matrices:

r(A) = [lA] - [|A71]

Assessing quality of computed solutions

Estimating sensitivity to perturbations

Monitor and control adaptive computational processes.

@ Here: A upper triangular (no loss of generality - computations
typically based on triangular decomposition)

Euclidean norm

(]
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Introduction: Earlier work

@ Turing (1948); Wilkinson (1961)

o Gragg, Stewart (1976); Cline, Moler, Stewart, Wilkinson (1979);
Cline, Conn, van Loan (1982); van Loan (1987)

@ Condition number estimation is part of standard libraries as LAPACK

@ Typically estimating lower bound for k(A) (note that it is often
sufficient to have the estimates within a reasonable multiplicative
factor from the exact x(A) - Demmel (1997))

@ l-norm: Hager (1984), Higham (1987, 1988, 1989, 1990) [175],
Higham, Tisseur (2000).

@ Incremental: Bischof (1990, 1991), Bischof, Pierce, Lewis (1990),
Bischof, Tang (1992); Ferng, Golub, Plemmons (1991); Pierce,
Plemmons (1992); 2-norm estimator based on pivoted QLP: Stewart
(1998); Duff, Vomel (2002)

@ See also other techniques in various applications: adaptive filters,
recursive least-squares, ACE for multilevel PDE solvers.
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Introduction: Our contribution

@ Motivated by new mixed direct/inverse decomposition methods (see
Bru et al, 2008, 2010), we initially wondered whether presence of the
matrix inverse can improve incremental condition number estimation.

@ We did find more accurate estimation techniques but the theoretical
explanation is not straightforward. As a by-product we have some
enhanced insight in incremental condition number estimation methods
in the 2-norm.

@ An immediate application is dropping and pivoting in preconditioner
computation (see Bollhéfer, Saad (2001 - 2006)).

@ Starting point: the methods by Bischof (1990) (incremental condition
number estimation - ICE) and Duff, Vémel (2002) (incremental norm
estimation - INE).
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@ Using a left extremal (minimum or maximum) singular vector wey¢, if
R=USVT = |[ulBl = |uleUSVT| = ot (R).
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ICE - Bischof (1990)

A R v
@ Using a left extremal (minimum or maximum) singular vector wey¢, if
R=USVT = |[ulyR| = |uleeUEVT|| = geze(R).

@ Bischof (1990): estimates to extremal singular values and left singular

vectors:
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@ Using a left extremal (minimum or maximum) singular vector wey¢, if
R=UXVT = |lufpR|| = [ulpnUSVT|| = 0eat(R).
@ Bischof (1990): estimates to extremal singular values and left singular

vectors:
Ug;t(R) ”yextR” ~ Ue:ct

e 3]

@ Seyzt and ceyr: components of the eigenvector correspondlng to the
extremal (minimum or maximum) eigenvalue of BS,,
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A R v
2=[5 3]

@ Duff, Vémel (2002): estimates to extremal singular values and right
singular vectors (originally used only to estimate the 2-norm). INE

computes
Ué\a]ct(R) = ||Rzext|| = oeat(R)
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INE - Duff, Vémel (2002)

- R v
@ Duff, Vémel (2002): estimates to extremal singular values and right
singular vectors (originally used only to estimate the 2-norm). INE
computes
O'é\;t(R) = || Rzeqt|| = Ocat(R)
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INE - Duff, Vémel (2002)

A R v
@ Duff, Vémel (2002): estimates to extremal singular values and right

singular vectors (originally used only to estimate the 2-norm). INE

computes
O'é\;t(R) = ||Rzext|| = Text(R)

ol

@ Again, sezt and ceyr: components of the eigenvector corresponding to

the extremal (minimum or maximum) eigenvalue of B,

Ué\:fct(R)Q Zg;ctRTU

1R 2ol = extjfs cjj=1

BN_
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2L RTy vTv 442



@ Introduction: The Problem

© The two strategies

© ICE and INE with inverse factors

@ INE maximization versus ICE maximization

© Numerical experiments

© Conclusions

9/32



@ Direct and inverse factors: having both R and R~ (mixed
direct/inverse (incomplete) decompositions, some other applications)

10/32



@ Direct and inverse factors: having both R and R~ (mixed
direct/inverse (incomplete) decompositions, some other applications)

@ Estimation of o_(R) is often harder than estimation of o (R). With
R~! this can be circumvented using 1/04 (R~1). However:

10/32



ICE and INE when both direct and inverse factors
available: ICE

@ Direct and inverse factors: having both R and R~! (mixed
direct/inverse (incomplete) decompositions, some other applications)

@ Estimation of o_(R) is often harder than estimation of o4 (R). With
R~! this can be circumvented using 1/04 (R~1). However:

Theorem

Computing the inverse factor R~! in addition to R does not give any
improvement for ICE:
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ICE and INE when both direct and inverse factors
available: ICE

@ Direct and inverse factors: having both R and R™! (mixed
direct/inverse (incomplete) decompositions, some other applications)

@ Estimation of o_(R) is often harder than estimation of o (R). With
R~! this can be circumvented using 1/04 (R~1). However:

Theorem

Computing the inverse factor R~! in addition to R does not give any
improvement for ICE: Let R be a nonsingular upper triangular matrix.
Then the ICE estimates of the singular values of R and R™! satisfy

o®(R) =1/cC(R7).

The approximate left singular vectors y_ and x corresponding to the ICE
estimates for R and R™!, respectively, satisfy

U?(R):L’Z =y R.
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11/32



ICE and INE when both direct and inverse factors
available: INE

Theorem

INE maximization applied to R~ may provide a better estimate than
INE minimization applied to R: Let R be a nonsingular upper triangular
matrix. Assume that the INE estimates of the singular values of R and
R~ satisfy 1/o¥ (R™Y) = 0N (R) = 0_(R). Then the INE estimates of
the singular values related to the extended matrix satisfy

1o (™) < oN(R)

with equality if and only if v is collinear with the left singular vector
corresponding to the smallest singular value of R.
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ICE and INE when both direct and inverse factors
available: INE

Theorem

INE maximization applied to R~ may provide a better estimate than
INE minimization applied to R: Let R be a nonsingular upper triangular
matrix. Assume that the INE estimates of the singular values of R and
R~ satisfy 1/o¥ (R™Y) = 0N (R) = 0_(R). Then the INE estimates of
the singular values related to the extended matrix satisfy

A

/oY (R < o¥(B)

with equality if and only if v is collinear with the left singular vector
corresponding to the smallest singular value of R.

Rather technical in case the assumption is relaxed to

1/o¥ (R7Y) < o™ (R). Superiority of maximization does not apply
always, but might explain the name incremental norm estimation.

-
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10

Figure : INE estimation of the smallest singular value of the 1D Laplacians of size
one until hundred: INE with minimization (solid line), INE with maximization
(circles) and exact minimum singular values (crosses).
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Figure : INE estimation of the smallest singular value of the 1D Laplacians of size
fifty until hundred (zoom of previous figure for INE with maximization and exact

minimum singular values).
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INE versus ICE

Theorem

Consider norm estimation of the extended matrix

A R v

let ICE and INE start with o = 0§ (R) = ol¥ (R); let y be the ICE
approximate LSV, z be the INE approximate RSV and w = Rz/o". We
have o (R) > o€ (R) if

(W w)? > p1,

where p; is the smaller root of the quadratic equation in (v’ w)?,

CEOR (HU& (v70 — (Ty)?) — o - <va>2> @)

+

+ (vTy)? <7?:#((0Ty) —v v)+v v) = 0.

+

16




Example: ICE versus INE

Figure : Value of p; in dependence of (vTy)? (x-axis) and 72 (y-axis) with
or =1, ||v)?>=0.1.
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Figure : Value of p; in dependence of (vTy)? (x-axis) and 72 (y-axis) with
or =1, [lv]*=1.
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Example: ICE versus INE

Figure : Value of p; in dependence of (vTy)? (x-axis) and v? (y-axis) with
or =1, ||v||* = 10.
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Example: ICE versus INE

Figure : Value of p; in dependence of (vTy)? (x-axis) and 72 (y-axis) with
op =1, A=0.6, ||v]|?=0.1.
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Example: ICE versus INE

Figure : Value of p; in dependence of (vTy)? (x-axis) and v? (y-axis) with
A= 0.6, 0|2 = 10.
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Comparison 1

Example 1: 50 matrices A=rand(100,100) - rand(100,100), dimension 100,
colamd, R from the QR decomposition of A. (Bischof, 1990, Section 4).

e ﬂ@ Boneia cfeote, 008260,/
0 10 20 30 40 50

Figure : Ratio of estimate to real condition number for the 50 matrices in
example 1. Solid line: ICE (original), pluses: INE with inverse and using only
maximization, circles: INE (original), squares: INE with inverse and using only
minimization.
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Comparison 2
Example 2: 50 matrices A = ULV of size 100, prescribed condition
number k choosing

Y = diag(o1,...,0100), with ak:ak, 1 <k <100, a:ﬁ_%,

U and V are random unitary factors, R from the QR decomposition of A
with colamd, ( Bischof, 1990, Section 4, Test 2; Duff, Vomel, 2002,
Section 5, Table 5.4). With x(A) = 10 we obtain:
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Comparison 3
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Figure : Ratio of estimate to real condition number for the 50 matrices in
example 2 with k(A) = 100. Solid line: ICE (original), pluses: INE with inverse
and using only maximization, circles: INE (original), squares: INE with inverse
and using only minimization.
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Comparison 4

Figure : Ratio of estimate to real condition number for the 50 matrices in
example 2 with k(A) = 1000. Solid line: ICE (original), pluses: INE with inverse
and using only maximization, circles: INE (original), squares: INE with inverse
and using only minimization.
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Matrices from MatrixMarket
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Figure : Ratio of estimate to actual condition number for the 20 matrices from
the Matrix Market collection without column pivoting. Solid line: ICE (original),
pluses: INE with inverse and using only maximization, circles: INE (original),
squares: INE with inverse and using only minimization.
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Matrices from MatrixMarket
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Figure : Ratio of estimate to actual condition number for the 20 matrices from
the Matrix Market collection with column pivoting. Solid line: ICE (original),
pluses: INE with inverse and using only maximization, circles: INE (original),
squares: INE with inverse and using only minimization.
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Conclusions

@ The two main 2-norm incremental condition estimators are inherently
different - confirmed both theoretically and experimentally.

@ INE strategy using both the direct and inverse factor and
maximization only is a method of choice yielding a highly accurate
2-norm estimator.

@ Future work: block algorithm, using the estimator inside a incomplete
decomposition.

For more details see:

J. Duintjer Tebbens, M. Tama: On Incremental Condition Estimators in the
2-Norm , Preprint NCCM/2013/15, submitted, May 2013.
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Thank you for your attention!
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