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Example - Fredholm integral of the first kind:

Given the continuous smooth kernel K(s,t) and the (mesuared) data
g(s), the aim is to find the (source) function f(¢) such that

g(s) = /ItK(s,t)f(t)dt-

Fredholm integral has smoothing property, i.e. high frequency com-
ponents in g are dampened compared to f.

Barcode reading:

Sharp barcode Gauss kernel Blurred recor d
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Consider a discretized inverse problem

Aac%b, b:bexact_l_bnoise’ AERNXM, :UERM, bERN
polluted by noise (measurement, discretization, rounding errors, ...)
with unknown noise level

5noise — || bnoise ||/|| bexact || .

Usual properties:

e the problem is ill-posed,

e A is a discretization of a smoothing operator,

e singular values o, of A decay gradually,

e Singular vectors Uj, Vj of A represent increasing frequencies,

e v°XACt js smooth and satisfies the discrete Picard condition (DPC),
° HbexactH > anoise”.

We want to approximate

2&Xa ct _ ATbexa ct _



Image deblurring problem: Original image, white noise
contaminated image and the “naive” solution z"2Ve = ATp:

X = true image b = blurred, noisy image X = inverse solution

Vision is the
art of seeing
what is
invisible to
others.

Jonathan Swift




The SVD components of the naive solution

ulpexact uLpnoise

naive — 4t _ l j l J
€T = Al = . V; . V;
R J L J )
rexact amplified noise
Tirexact T noise
T Zng—l o; vj + Zng—l o; Uj
pexact amplified noise

corresponding to small o;'s are dominated by amplified (white)
noise.

Exact data satisfy DPC: On average, |u]TbexaCt| decay faster than
the singular values o; of A, j=1,...,N.

White noise components |(b”0ise,uj)| do not exhibit any trend.
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Golub-Kahan iterative bidiagonalization (GK) of A:

Given wg = 0,s71 = b/B1, where pB1=|bl]|, for j=1,2,...

T
ajw; = A" s; — Bjwj—1, |wjl|=1,
Bi+1sj+1 = Awj — aysy, [sj+1ll =1.
Let S, = [s1,...,8k], Wi = [wq,...,w;] be the associated matrices
with orthonormal columns. Denote
o _
B ao [ Ly, ]
L — , L )
! Br oy |

the bidiagonal matrices containing the normalization coefficients.



Regularization based on GK:

First the problem is projected onto a lower dimensional Krylov sub-
space

Kp(AT A, ATb) = Span{ATb, (AT A)ATb, ..., (AT A)F1ATH)

(regularization by projection with k representing the regularization
parameter), giving

Lyyy =~ Breq.

The projected problem is solved either directly (e.g. in LSQR,
CGLS) or some inner regularization is applied (in hybrid methods);
see e.g. [Hansen — 11, 98], [Kilmer, Hansen, Espanol — 06], [Kilmer, O'Leary
— 01], [Fiero, Golub, Hansen, O’'Leary — 97], [O’'Leary, Simmons — 81].
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In [H., Plesinger, Strakos: '09] noise propagation in GK has been ana-
lyzed; see also theses [Vvasilik: '11], [Michenkova: '13].

Result: The size of the first component of the left singular vector
pgk) corresponding to the smallest singular value of L; decreases. At
some iteration kppise (the noise revealing iteration) it sharply starts
to (almost) stagnate close to the noise level, i.e.

k .
Onoise ~ |(p§ no'se)a e1)].

Moreover, the bidiagonalization vector Sknoise is fully dominated by
(the high frequency part of) noise. Thus

(knoise)

bIOBE A ID"PE] g0 A 1IN (P, €1) ] e -
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Components |(p§k),el)|, k=12, ... for Shaw from [RegToolbox],
with white noise §,5cc = 10714 10~% (top); high frequency violet,
and low frequency Brown noise, o = 10~% (bottom):
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Noise level jippise IN the data, and the estimated noise level
(average values computed using 1000 randomly chosen white
noise vectors yM"0Ise):

SHAW (400)
dnoise 1x 10714 1x10°° 1x10~% 1x 102
estimate || 1.80 x 1071 | 1.31 x10°° | 1.01 x10* | 1.03 x 1072
Enoise 16 9 7 4
ILAPLACE(100,1)

Snoise 1x 1013 1x 107 1x 102 1x 101
estimate || 9.12x 1071 | 1.34 x 107 [ 1.02x 1072 | 1.11 x 101
Enoise 22 15.30 6.02 2

Remark: £knpice Can be detected automatically, see [H., Plesinger,
Strakos: '09], [Vasilik: "11 - thesis].
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Components |(pgk),61)|, E=1,2 ... (top),

error history of LSQR solutions (bottom), and the best

LSQR reconstructions, Shaw with §,gise
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Denoising: In the iteration knpise, W€ have the approximation

| o
b7 2 ] |(p{*), 1)) 5

noise °

We can subtract it from b. [Michenkova: '13 - thesis].

Original noise, and noise remaining after denoising, Shaw:
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Repeating the process gives a better approximation of original noise.

Fourier coeffs. of the original and approximated noise vector

10

10

10

after 5 repeats, Shaw with §,pise = 107 %:

FFT coefficients
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Singular values of A, and spectral coeffs. of the original and
denoised observation vectors, Shaw with §,gise = 10™%:

4
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Image deblurring problem: image size 324 x 470 pixels,
problem dimension N = 152280, the exact solution (left) and

the noisy right-hand side (right), §,0ice = 3 x 107 3:

exact bexact + bnoise
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Components |(p§k),el)|, E=1,2,... (top),
error history of LSQR solutions (bottom), and the best
LSQR reconstruction, GK without reorthogonalization:
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Hybrid LSQR:

Stopping GK for k£ < kppise, SOMe information is not absorbed in the
problem yet and the result is sometimes unsatisfactory.

Stopping GK for k > knoise, the bidiagonal problem inherits a part of
the ill-posedness of the original problem, inner regularization must
be applied. The discrepancy principle can be used to stop GK.

Discrepancy principle:

Bidiagonalization is stopped for the smallest £ where

b — Az VP = o B¢ &~ a6 b

for some truncation parameter 1 < r < k, where ¢§ is the estimate
of the noise level and « is a given real parameter.
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Here d,0icc = 1 x 107 1: the best LSQR solution (left)
and the hybrid TSVD-LSQR solution stopped by discrepancy

principle based on the noise level estimate (right):

LSQR reconstruction with minimal error

TSVD-LSQR recons truction using DP
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Summary: Using GK, cheap and accurate estimate of the noise
level and noise vector can be obtained. Then one can, e.q.

e stop LSQR at the iteration kngise;
e Stop a hybrid method based on the discrepancy principle;
e try to denoise the right-hand side b and solve the problem again;

Future work:

e large scale problems (determining kngise);
e rigorous justification of the finite precision behavior;
e applications in regularization and denoising.
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