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Example - Fredholm integral of the first kind:

Given the continuous smooth kernel K(s, t) and the (mesuared) data
g(s), the aim is to find the (source) function f(t) such that

g(s) =
∫
It
K(s, t)f(t)dt.

Fredholm integral has smoothing property, i.e. high frequency com-
ponents in g are dampened compared to f .

Barcode reading:
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Consider a discretized inverse problem

Ax ≈ b, b = bexact + bnoise, A ∈ RN×M , x ∈ RM , b ∈ RN

polluted by noise (measurement, discretization, rounding errors, ...)
with unknown noise level

δnoise ≡ ‖ bnoise ‖/‖ bexact ‖ .

Usual properties:

• the problem is ill-posed,

• A is a discretization of a smoothing operator,

• singular values σj of A decay gradually,

• singular vectors uj, vj of A represent increasing frequencies,

• bexact is smooth and satisfies the discrete Picard condition (DPC),

• ‖bexact‖ � ‖bnoise‖ .

We want to approximate

xexact = A†bexact .
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Image deblurring problem: Original image, white noise

contaminated image and the “naive” solution xnaive ≡ A†b:

 x = inverse solution b = blurred, noisy image x = true image
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The SVD components of the naive solution

xnaive ≡ A†b =
∑l

j=1

uTj b
exact

σj
vj︸ ︷︷ ︸

xexact

+
∑l

j=1

uTj b
noise

σj
vj︸ ︷︷ ︸

amplified noise

+
∑M

j=l+1

uTj b
exact

σj
vj︸ ︷︷ ︸

xexact

+
∑M

j=l+1

uTj b
noise

σj
vj︸ ︷︷ ︸

amplified noise

corresponding to small σj’s are dominated by amplified (white)

noise.

Exact data satisfy DPC: On average, |uTj b
exact| decay faster than

the singular values σj of A, j = 1, . . . , N .

White noise components |(bnoise, uj)| do not exhibit any trend.
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Golub-Kahan iterative bidiagonalization (GK) of A :

Given w0 = 0 , s1 = b / β1 , where β1 = ‖b‖ , for j = 1,2, . . .

αj wj = AT sj − βj wj−1 , ‖wj‖ = 1 ,

βj+1 sj+1 = Awj − αj sj , ‖sj+1‖ = 1 .

Let Sk = [s1, . . . , sk], Wk = [w1, . . . , wk] be the associated matrices

with orthonormal columns. Denote

Lk =


α1
β2 α2

. . . . . .
βk αk

 , Lk+ =

[
Lk

eTk βk+1

]

the bidiagonal matrices containing the normalization coefficients.
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Regularization based on GK:

First the problem is projected onto a lower dimensional Krylov sub-

space

Kk(ATA,AT b) = Span{AT b, (ATA)AT b, . . . , (ATA)k−1AT b}

(regularization by projection with k representing the regularization

parameter), giving

Lk+ y ≈ β1 e1.

The projected problem is solved either directly (e.g. in LSQR,

CGLS) or some inner regularization is applied (in hybrid methods);

see e.g. [Hansen – 11, 98], [Kilmer, Hansen, Español – 06], [Kilmer, O’Leary

– 01], [Fiero, Golub, Hansen, O’Leary – 97], [O’Leary, Simmons – 81].
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In [H., Plešinger, Strakoš: ’09] noise propagation in GK has been ana-

lyzed; see also theses [Vasiĺık: ’11], [Michenková: ’13].

Result: The size of the first component of the left singular vector

p
(k)
1 corresponding to the smallest singular value of Lk decreases. At

some iteration knoise (the noise revealing iteration) it sharply starts

to (almost) stagnate close to the noise level, i.e.

δnoise ≈ |(p
(knoise)
1 , e1)| .

Moreover, the bidiagonalization vector sknoise
is fully dominated by

(the high frequency part of) noise. Thus

bnoise ≈ ‖bnoise‖ sknoise
≈ ‖b‖ |(p(knoise)

1 , e1)| sknoise
.
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Components |(p(k)
1 , e1)|, k = 1, 2, . . . for Shaw from [RegToolbox],

with white noise δnoise = 10−14, 10−4 (top); high frequency violet,

and low frequency Brown noise, δnoise = 10−4 (bottom):
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Noise level δnoise in the data, and the estimated noise level

(average values computed using 1000 randomly chosen white

noise vectors bnoise):

SHAW(400)

δnoise 1× 10−14 1× 10−6 1× 10−4 1× 10−2

estimate 1.80× 10−14 1.31× 10−6 1.01× 10−4 1.03× 10−2

knoise 16 9 7 4
ILAPLACE(100,1)

δnoise 1× 10−13 1× 10−7 1× 10−2 1× 10−1

estimate 9.12× 10−14 1.34× 10−7 1.02× 10−2 1.11× 10−1

knoise 22 15.30 6.02 2

Remark: knoise can be detected automatically, see [H., Plešinger,

Strakoš: ’09], [Vasiĺık: ’11 - thesis].
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Components |(p(k)
1 , e1)|, k = 1, 2, . . . (top),

error history of LSQR solutions (bottom), and the best

LSQR reconstructions, Shaw with δnoise = 10−4:
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Denoising: In the iteration knoise, we have the approximation

bnoise≈ ‖b‖ |(p(knoise)
1 , e1)| sknoise

.

We can subtract it from b. [Michenková: ’13 - thesis].

Original noise, and noise remaining after denoising, Shaw:
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Repeating the process gives a better approximation of original noise.

Fourier coeffs. of the original and approximated noise vector

after 5 repeats, Shaw with δnoise = 10−4:
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Singular values of A, and spectral coeffs. of the original and

denoised observation vectors, Shaw with δnoise = 10−4:

0 50 100 150 200 250 300 350 400
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Testing problem SHAW(400), δ
noise

 = 10−4

 

 
singular values of A

UT b (noisy right−hand side)

UT b(1)

UT b(2)

UT b(3)

UT b(4)

UT b(5)

18



Image deblurring problem: image size 324× 470 pixels,

problem dimension N = 152280, the exact solution (left) and

the noisy right-hand side (right), δnoise = 3× 10−3:

xexact bexact + bnoise
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Components |(p(k)
1 , e1)|, k = 1, 2, . . . (top),

error history of LSQR solutions (bottom), and the best

LSQR reconstruction, GK without reorthogonalization:
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Hybrid LSQR:

Stopping GK for k ≤ knoise, some information is not absorbed in the

problem yet and the result is sometimes unsatisfactory.

Stopping GK for k > knoise, the bidiagonal problem inherits a part of

the ill-posedness of the original problem, inner regularization must

be applied. The discrepancy principle can be used to stop GK.

Discrepancy principle:

Bidiagonalization is stopped for the smallest k where

‖b−AxTSVD,r
k ‖ = α ‖bnoise‖ ≈ α δ ‖b‖

for some truncation parameter 1 ≤ r ≤ k, where δ is the estimate

of the noise level and α is a given real parameter.
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Here δnoise = 1× 10−1: the best LSQR solution (left)

and the hybrid TSVD-LSQR solution stopped by discrepancy

principle based on the noise level estimate (right):

LSQR reconstruction with minimal error TSVD−LSQR reconstruction using DP
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Summary: Using GK, cheap and accurate estimate of the noise

level and noise vector can be obtained. Then one can, e.g.

• stop LSQR at the iteration knoise;

• stop a hybrid method based on the discrepancy principle;

• try to denoise the right-hand side b and solve the problem again;

• ...

Future work:

• large scale problems (determining knoise);

• rigorous justification of the finite precision behavior;

• applications in regularization and denoising.
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