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Motivation

We consider the solution of linear systems

Ax = b

where A ∈ Cn×n is non-normal and nonsingular, by the Generalized
Minimal Residual (GMRES) method [Saad & Schultz 1986].

As this is a Krylov subspace method based on long recurrences, we will
focuss on restarted GMRES; GMRES(m) will denote GMRES restarted
after every mth iteration.

Without loss of generality, ‖b‖ = 1 , x0 = 0 .
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Mathematical properties of GMRES
Optimality property

The kth residual norm satisfies

‖rk‖ = min
x∈Kk(A,b)

‖b − Ax‖,

where the minimization is over all elements of the kth Krylov subspace,

Kk(A, b) ≡ span{b, Ab, . . . , A
k−1b} .

Residual norms do not increase, but they can stagnate in
GMRES(m)

Residuals can be written as polynomials in A,

rk = p(A)b with ‖rk‖ = min
p∈πk

‖p(A)b‖,

where πk is the set of polynomials of degree k taking the value one
in the origin.
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Mathematical properties of GMRES
Influence of spectral properties

Let the Jordan normal form of A be

A = XJX−1,

then the kth residual norm can be written as

‖rk‖ = min
p∈πk

‖Xp(J)X−1b‖.

This shows that the convergence of GMRES, measured by the residual
norm, depends on

the eigenvalues contained in J

the eigenvectors (or principal vectors with non-diagonalizable input
matrices) contained in X

components of the right-hand side in the eigenvector basis.
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Mathematical properties of GMRES
Limited influence of eigenvalues alone

The next classical result shows that convergence needs not depend on the
eigenvalues alone:

Theorem 1 [Greenbaum & Pták & Strakoš 1996] Let

‖b‖ = f0 ≥ f1 ≥ f2 · · · ≥ fn−1 > 0

be any non-increasing sequence of real positive values and let

λ1, . . . , λn

be any set of nonzero complex numbers. Then there exists a class of
matrices A ∈ Cn×n and right-hand sides b ∈ Cn such that the residual
vectors r(k) generated by GMRES method satisfy

‖r(k)‖ = fk, 0 ≤ k ≤ n, and spectrum(A) = {λ1, . . . , λn}.
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Mathematical properties of GMRES
Influence of Ritz values

We recently extended this result with the fact that GMRES convergence
needs not be dependent on Ritz values either, except that a zero Ritz
value implies stagnation:

Theorem 2 [DT & Meurant 2012] In addition to the assumptions of
Theorem 1, let also n(n − 1)/2 Ritz values

θ
(1)
1 ,

θ
(2)
1 , θ

(2)
2 ,

. . . ,

θ
(n−1)
1 , . . . , θ

(n−1)
n−1 ,

λ1, . . . . . . . . . , λn ,

be given and assume that fk−1 = fk if and only if there is a zero Ritz
value for the kth iteration.
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Mathematical properties of GMRES
Influence of Ritz values

Then there exists a class of matrices A ∈ Cn×n and right-hand sides
b ∈ Cn such that the residual vectors r(k) generated by GMRES method
satisfy

‖r(k)‖ = fk, 0 ≤ k ≤ n, spectrum(A) = {λ1, . . . , λn},

and GMRES generates in the kth iteration (for all k ≤ n) the Ritz values

θ
(k)
1 , . . . , θ

(k)
k .
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Mathematical properties of GMRES
Influence of Ritz values

Then there exists a class of matrices A ∈ Cn×n and right-hand sides
b ∈ Cn such that the residual vectors r(k) generated by GMRES method
satisfy

‖r(k)‖ = fk, 0 ≤ k ≤ n, spectrum(A) = {λ1, . . . , λn},

and GMRES generates in the kth iteration (for all k ≤ n) the Ritz values

θ
(k)
1 , . . . , θ

(k)
k .

Thus, in every iteration, we can prescribe the Ritz values and
simultaneously the GMRES residual norm. Note this does not
contradict the result that converging Ritz values cause super-linear
convergence of close to normal systems [van der Vorst & Vuik 1993].

This also shows that the Arnoldi method for eigenproblems can
generate arbitrary Ritz values in all intermediate iterations.
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Consequences for restarted GMRES?

It seems possible to prescribe the harmonic Ritz values in the
Arnoldi method as well [Meurant, personal communication].

Prescribing GMRES residual norms and harmonic Ritz values
simultaneously is unlikely to be possible – harmonic Ritz values are
the roots of the GMRES polynomials rk = p(A)b.
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Consequences for restarted GMRES?

It seems possible to prescribe the harmonic Ritz values in the
Arnoldi method as well [Meurant, personal communication].

Prescribing GMRES residual norms and harmonic Ritz values
simultaneously is unlikely to be possible – harmonic Ritz values are
the roots of the GMRES polynomials rk = p(A)b.

Many acceleration techniques for restarted GMRES rely on spectral
information gained from Ritz values or harmonic Ritz values. The
purpose of this talk is:

To investigate whether eigenvalues and Ritz values can be
prescribed in restarted GMRES as well.

To point out possible consequences for preconditioning and other
popular acceleration strategies for GMRES(m).
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The parametrization for full GMRES

Here is how one can prescribe Ritz values and residual norms in full
GMRES [DT & Meurant 2013]:
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Here is how one can prescribe Ritz values and residual norms in full
GMRES [DT & Meurant 2013]:

Choose a unitary matrix V and put b = V e1 and

A = V HV ∗, H upper Hessenberg.

To force the desired eigenvalues, H will be of the form

H = U−1CU, U nonsingular upper triangular,

where C is the companion matrix for the prescribed spectrum.

To force the desired residual norms, the first row gT of U has entries

g1 =
1

f(0)
, gk =

√

f(k − 2)2 − f(k − 1)2

f(k − 2)f(k − 1)
, k = 2, . . . , n.
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The parametrization for full GMRES

Let
A = V (U−1CU)V ∗, b = V e1.
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The parametrization for full GMRES

Let
A = V (U−1CU)V ∗, b = V e1.

To force the desired Ritz values, the remaining submatrix T of

U =

[

gT

0 T

]

has entries satisfying

k
∏

i=1

(λ − ρ
(k)
i ) = gk+1 +

k
∑

i=1

ti,kλi.
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The parametrization for full GMRES

Let
A = V (U−1CU)V ∗, b = V e1.

To force the desired Ritz values, the remaining submatrix T of

U =

[

gT

0 T

]

has entries satisfying

k
∏

i=1

(λ − ρ
(k)
i ) = gk+1 +

k
∑

i=1

ti,kλi.

Is prescribing these values possible in restarted GMRES ?
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Generalization for restarted GMRES

Prescribing residual norms in restarted GMRES was considered in the
paper [Vecharinsky & Langou 2011]. It assumes a rather special situation in
GMRES(m):

1 During every restart cycle, all residual norms stagnate except for the
very last iteration inside the cycle.

2 In this very last iteration it is assumed that the residual norm is
strictly decreasing.
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Generalization for restarted GMRES

Prescribing residual norms in restarted GMRES was considered in the
paper [Vecharinsky & Langou 2011]. It assumes a rather special situation in
GMRES(m):

1 During every restart cycle, all residual norms stagnate except for the
very last iteration inside the cycle.

2 In this very last iteration it is assumed that the residual norm is
strictly decreasing.

Theorem 3 [Vecharinsky & Langou 2011]. Let n complex nonzero numbers
λ1, . . . , λn and k positive decreasing numbers

f(0) > f(1) > · · · > f(k − 1) > 0,

be given. With the assumptions 1. and 2. above, let the very last
residual at the end of the jth cycle be denoted by r̄j . If km < n, then:
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Generalization for restarted GMRES

There exists a matrix A of order n with a right hand side such that
GMRES(m) generates residual norms at the end of cycles satisfying

‖r̄j‖ = f(j), j = 0, 1, . . . , k.

The matrix A has the eigenvalues λ1, . . . , λn.
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Generalization for restarted GMRES

There exists a matrix A of order n with a right hand side such that
GMRES(m) generates residual norms at the end of cycles satisfying

‖r̄j‖ = f(j), j = 0, 1, . . . , k.

The matrix A has the eigenvalues λ1, . . . , λn.

In fact, to prescribe all residual norms and all Ritz values in GMRES(m),
it suffices that (m + 1) × m Hessenberg matrices of the individual restart
cycles have the form described before, i.e. that the kth Hessenberg
matrix is

Ĥ(k)
m =

[

g
(k)
1 . . . g

(k)
m+1

0 T
(k)
m

]−1
[

0
Im

]

[

g
(k)
1 . . . g

(k)
m

0 T
(k)
m−1

]

,

where g(k) determines the convergence curve and the columns of Tm−1

determine the Ritz values.
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Generalization for restarted GMRES

First, we assume restart cycles do not stagnate in their last iteration.

Theorem 5 [DT & Meurant 2013?] Let

Ĥ(1)
m , . . . , Ĥ(k)

m ∈ C
(m+1)×m

be k unreduced upper Hessenberg matrices with positive subdiagonal and
let km < n. If A ∈ Cn×n is a matrix and b ∈ Cn a nonzero vector, the
following assertions are equivalent:

1. The kth cycle of GMRES(m) applied to A and b does not stagnate

in its last iteration and generates the Hessenberg matrix Ĥ
(k)
m .

2. The matrix A and the vector b have the form

A = V HV ∗, b = V e1,

where V is unitary, H is upper Hessenberg and the columns
(k − 1)m + 1 till km corresponding to the kth cycle are of the form:

14



Generalization for restarted GMRES

H
[

e(k−1)m+1, . . . , ekm

]

=









































(
∏k−1

i=2 ζ
(i)
1 )z(1)eT

1 Ĥ
(k)
m

...
...

ζ
(k−1)
1 z(k−2)eT

1 Ĥ
(k)
m

ĥ(k) z(k−1)eT
1 Ĥ

(k)
m

[

0
Im−1

]

0
[

0 Im

]

Ĥ
(k)
m

[

0
Im−1

]

0 0









































, where
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Generalization for restarted GMRES

z(i) =
(

Im+1 − Ĥ(i)
m (Ĥ(i)

m )†
)

e1/
∥

∥

∥

(

Im+1 − Ĥ(i)
m (Ĥ(i)

m )†
)

e1

∥

∥

∥
, 1 ≤ i ≤ k−1,

ĥ(k) = [ĥ
(k)
1 , . . . , ĥ

(k)
m+1]T =

1

ζ
(k−1)
m+1

(

h
(k)
1,1z(k−1) − Ĥ(k−1)

m [ζ
(k−1)
1 , . . . , ζ(k−1)

m ]T
)

,

and

ĥ
(k)
m+2 =

h
(k)
2,1

ζ
(k−1)
m+1

.

Thus we know how to generate, by the right choice of columns of H ,

arbitrary Hessenberg matrices during all restarts. Therefore we may

prescribe not only GMRES residual norms inside cycles and Ritz values

but also other values (singular values, harmonic Ritz values ...).
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Generalization for restarted GMRES

Remark: Note that prescribing k restarts under the condition km < n
means that in the parametrization of the matrix A and the vector b,

A = V HV ∗, b = ‖b‖V e1,

we prescribe km residual norms and we put conditions on the first km
columns of H only. The last column can be chosen arbitrarily. It can be
checked, that any nonzero spectrum of A is possible with an appropriate
choice of the last column.
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Generalization for restarted GMRES

Remark: Note that prescribing k restarts under the condition km < n
means that in the parametrization of the matrix A and the vector b,

A = V HV ∗, b = ‖b‖V e1,

we prescribe km residual norms and we put conditions on the first km
columns of H only. The last column can be chosen arbitrarily. It can be
checked, that any nonzero spectrum of A is possible with an appropriate
choice of the last column.

Now we allow stagnation at the end of the cycles. Demonstrating this
case in detail for the first two cycles, let their residuals be denoted as

r
(1)
0 = b, r

(1)
1 , . . . , r(1)

m ,

r
(2)
0 = r(1)

m , r
(2)
1 , . . . , r(2)

m .
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Generalization for restarted GMRES

Let m iterations of the initial cycle give the Arnoldi decomposition

AV (1)
m = V

(1)
m+1Ĥ(1)

m , V
(1)∗

m+1V
(1)

m+1 = Im+1.

The m iterations of the second cycle give the Arnoldi decomposition

AV (2)
m = V

(2)
m+1Ĥ(2)

m , V
(2)∗

m+1V
(2)

m+1 = Im+1, V
(2)

m+1e1 =
r

(1)
m

‖r
(1)
m ‖

≡ V
(1)

m+1z(1).

The vector z(1) is

z(1) =
(

Im+1 − Ĥ(1)
m (Ĥ(1)

m )†
)

e1/
∥

∥

∥

(

Im+1 − Ĥ(1)
m (Ĥ(1)

m )†
)

e1

∥

∥

∥
.
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Generalization for restarted GMRES

Let m iterations of the initial cycle give the Arnoldi decomposition

AV (1)
m = V

(1)
m+1Ĥ(1)

m , V
(1)∗

m+1V
(1)

m+1 = Im+1.

The m iterations of the second cycle give the Arnoldi decomposition

AV (2)
m = V

(2)
m+1Ĥ(2)

m , V
(2)∗

m+1V
(2)

m+1 = Im+1, V
(2)

m+1e1 =
r

(1)
m

‖r
(1)
m ‖

≡ V
(1)

m+1z(1).

The vector z(1) is

z(1) =
(

Im+1 − Ĥ(1)
m (Ĥ(1)

m )†
)

e1/
∥

∥

∥

(

Im+1 − Ĥ(1)
m (Ĥ(1)

m )†
)

e1

∥

∥

∥
.

How do we construct the columns of H ? We know that the columns
1, . . . , m of H are

H

[

Im

0

]

=

[

Ĥ
(1)
m

0

]

.
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Generalization for restarted GMRES

Lemma 1. The matrix Ĥ
(2)
m is the Hessenberg matrix generated by m

iterations of Arnoldi with input matrix H and initial vector
[

z(1)T 0
]T

, i.e.

HZm = Zm+1Ĥ(2)
m , Zm+1e1 =

[

z(1)

0

]

, Z∗
m+1Zm+1 = Im+1. (1)

Can we construct the columns m + 1, m + 2, . . . , 2m of H such that (1)

is satisfied with a prescribed Hessenberg matrix Ĥ
(2)
m ? This will depend

on the number of non-zeroes in
[

z(1)T 0
]T

because

H Zm

=

Zm+1 Ĥ
(2)
m

.

19



Generalization for restarted GMRES

Lemma 2. Let r
(1)
m = V

(1)
m+1z(1). Then for an integer j the last j − 1

entries of z(1) are zero if and only if the last j residual norms are equal,
i.e.

‖r
(1)
0 ‖ ≥ ‖r

(1)
1 ‖ ≥ · · · ≥ ‖r

(1)
m−j‖ > ‖r

(1)
m−j+1‖ = · · · = ‖r(1)

m ‖.

Then the Arnoldi decomposition HZm = Zm+1Ĥ
(2)
m looks like

H

m

Zm

j

=

Zm+1

j

Ĥ
(2)
m

j

.
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Generalization for restarted GMRES

Therefore, with j − 1 stagnation steps at the end of the first restart cycle:

the first j − 1 columns of the Hessenberg matrix of the second cycle

Ĥ
(2)
m are fully determined by Ĥ

(1)
m and z(1) - they cannot be

prescribed.

We can also prove that the first row of Ĥ
(2)
m is zero on its first j − 1

positions, i.e. they correspond to iterations with stagnation!
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Generalization for restarted GMRES

Therefore, with j − 1 stagnation steps at the end of the first restart cycle:

the first j − 1 columns of the Hessenberg matrix of the second cycle

Ĥ
(2)
m are fully determined by Ĥ

(1)
m and z(1) - they cannot be

prescribed.

We can also prove that the first row of Ĥ
(2)
m is zero on its first j − 1

positions, i.e. they correspond to iterations with stagnation!

Corollary If the last j − 1 residual norms stagnate in the initial cycle, i.e.

‖r
(1)
0 ‖ ≥ ‖r

(1)
1 ‖ ≥ · · · ≥ ‖r

(1)
m−j‖ > ‖r

(1)
m−j+1‖ = · · · = ‖r(1)

m ‖

then the first j − 1 residual norms stagnate in the second cycle,

‖r
(2)
0 ‖ = ‖r

(2)
1 ‖ = · · · = ‖r

(2)
j−1‖.

Hence stagnation in one cycle is literally mirrored in the next cycle!
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Generalization for restarted GMRES
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Acceleration of restarted GMRES

The previous results have a number of theoretical implications for
strategies to accelerate restarted GMRES like preconditioning.

Any convergence speed of GMRES(m) is possible with any spectrum,
therefore:

A preconditioner that clusters eigenvalues needs not accelerate
GMRES(m).

Additional spectral information is necessary to guarantee
acceleration.

An important example is constraint preconditioning, where the few
distinct eigenvalues (e.g. 1 and (1 ±

√

(5)/2) of the preconditioned
matrix belong to small Jordan blocks. Then in exact arithmetic
GMRES terminates at a very low iteration number (possibly smaller
than m). Still this does not say anything on convergence speed.
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Acceleration of restarted GMRES

Stagnation at the end of one cycle is mirrored in the beginning of the
next cycle, therefore:

Obviously, it is not a good idea to do a standard restart with
stagnation at the end of the current cycle

This may be the moment to modify (adapt) the preconditioner to
change the Krylov subspaces one projects onto

Acceleration with Krylov subspace recycling (see e.g. [de Sturler 1996,

1999], [Parks & de Sturler & Mackey & Johnson & Maiti 2006]) should avoid
the subspaces that cause stagnation.

Stagnation at the end of a cycle may be a strong motivation to
adapt any acceleration technique.
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Acceleration of restarted GMRES

We now focuss on spectral acceleration techniques (often called deflation
techniques, but deflation needs not exploit spectral quantities, see, e.g.
[Nabben & Vuik 2004, 2006, 2008]):

The suspicion is that outlying eigenvalues, mostly eigenvalues close
to zero, hamper convergence

Eigenvalue approximations are obtained from the Ritz or harmonic
Ritz values generated during the GMRES(m) process

The corresponding eigenvectors (or invariant subspaces) are used to
eliminate the influence of convergence hampering eigenvalues

This can be done through preconditioning, augmentation of the
Krylov subspaces, projecting away invariant subspaces or a
combination of these.

Here is a very incomplete list of proposed strategies and literature:
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Acceleration of restarted GMRES

Spectral acceleration techniques for restarted GMRES include:

Augmentation of Krylov subspaces: [Morgan 1995], [Le Calvez & Molina

1999], [Morgan 2000], [Morgan 2002], [Chapman & Saad 1997]

Preconditioning: [Kharchenko & Yeremin 1995], [Erhel & Burrage & Pohl

1996], [Baglama & Calvetti & Golub & Reichel 1998], [Frank & Vuik 2001],
[Carpentieri & Duff & Giraud 2003], [Loghin & Ruiz & Touhami 2006],
[Carpentieri & Giraud & Gratton 2007], [Giraud & Gratton & Martin 2007],
[Giraud & Gratton & Pinel & Vasseur 2010]

Analysis and overviews: [Saad 1997], [Burrage & Erhel 1998], [Eiermann &

Ernst & Schneider 2000], [Saad 2000], [Simoncini & Szyld 2007], [Yeung &

Tang & Vuik 2010], [Gaul & Gutknecht & Liesen & Nabben 2013]
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Acceleration of restarted GMRES

These techniques are very beneficial in a large variety of applications.
Nevertheless, our results show that in theory

Ritz values need not converge to any eigenvalues (small or not) at
all

The same appears to hold for harmonic Ritz values

It may even be problematic to assess the quality of Ritz values; e.g.
the standard residual norm

‖A(Vky) − ρ(Vky)‖ = hk+1,k|eT
k y|

for a Ritz value/Ritz vector {ρ, Vky} pair needs not be indicative
[Godet-Thobie 1993], [DT & Meurant 2012].

Thus it may be hard to get accurate approximations of eigenvalues
close to zero.
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Acceleration of restarted GMRES

Suppose we did succeed in finding eigenvalues close to zero and in
eliminating their influence on GMRES(m), does this accelerate the
solution process ?

We showed any convergence speed of GMRES(m) is possible with
any spectrum

Therefore, eigenvalues close to zero need not hamper convergence
at all

The argument suggesting small eigenvalues hamper convergence is:

At termination, the GMRES polynomial is zero at the
eigenvalues and one in the origin.
Therefore, if an eigenvalue is close to zero, such a polynomial
may be hard to build.

Note that we showed that a zero Ritz value does imply stagnation.
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Conclusions and future work

Any residual norms and any Ritz values are possible for the first n
iterations of restarted GMRES, with any spectrum of A.
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explication for the success of many spectrum-based acceleration
techniques is missing.

Questions for future work include:

Can our results be used to build more powerful
preconditioners?

Are comparable results possible for Krylov subspace methods
with short recurrences (Bi-CG, Bi-CGStab,. . . )?

What can be said for GMRES(m) after iteration number n ?
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