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Introduction: The Problem

Matrix condition number: an important quantity used in numerical linear
algebra

κ(A) = ‖A‖ · ‖A−1‖

Assessing quality of computed solutions

Estimating sensitivity to perturbations

Monitor and control adaptive computational processes.

Here: A upper triangular (no loss of generality - computations
typically based on triangular decomposition)

Euclidean norm
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Introduction: Earlier work

Condition number estimation is important → a lot of excellent
previous work
Part of standard libraries as LAPACK

Turing (1948); Wilkinson (1961)
Gragg, Stewart (1976); Cline, Moler, Stewart, Wilkinson (1979);
Cline, Conn, van Loan (1982); van Loan (1987)
Incremental: Bischof (1990, 1991), Bischof, Pierce, Lewis (1990),
Bischof, Tang (1992); Ferng, Golub, Plemmons (1991); Pierce,
Plemmons (1992); 2-norm estimator based on pivoted QLP: Stewart
(1998); Duff, Vömel (2002)
1-norm: Hager (1984), Higham (1987, 1988, 1989, 1990) [175],
Higham, Tisseur (2000).
See also other techniques in various applications: adaptive filters,
recursive least-squares in signal processing, ACE for multilevel PDE
solvers.
Typically estimating lower bound for κ(A).
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Introduction: The goal

Getting better understanding of incremental estimation methods in
2-norm.

Starting point: the methods by Bischof (1990) (incremental condition
number estimation - ICE) and Duff, Vömel (2002) (incremental norm
estimation - INE).

Discussing more accurate estimation techniques and assembling
theoretical and experimental evidence about this (note that it is often
sufficient to have the estimates within a reasonable multiplicative
factor from the exact κ(A) - Demmel (1997)); matrix inverse can
provide an additional information

Motivated also by methods for dropping in preconditioner
computation (see Bollhöfer, Saad (2001 - 2006), Bru et al, 2008,
2010; talk by J. Kopal at the Sparse Days (2013))

5 / 33



Outline

1 Introduction: The Problem

2 The two strategies

3 INE maximization versus minimization

4 INE maximization versus ICE maximization

5 Numerical experiments

6 Conclusions

6 / 33



ICE - Bischof (1990)
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,

sext and cext: components of the eigenvector corresponding to the
extremal (minimum or maximum) eigenvalue of BC

ext

BC
ext ≡







σC
ext(R)2 + (yT

extv)2 γ(yT
extv)

γ(yT
extv) γ2






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Again, sext and cext: components of the eigenvector corresponding to
the extremal (minimum or maximum) eigenvalue of BN

ext

BN
ext ≡







σN
ext(R)2 zT

extR
T v

zT
extR

T v vT v + γ2
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available: ICE

Direct and inverse factors: having both R and R−1 (mixed
direct/inverse (incomplete) decompositions, some other applications)

Theorem

Computing the inverse factor R−1 in addition to R does not give any

improvement for ICE (estimation of the extreme singular values and
corresponding left singular vectors):

Let R be a nonsingular upper triangular matrix. Then the ICE estimates of
the singular values of R and R−1 satisfy

σC
−(R) = 1/σC

+(R−1).

The approximate left singular vectors y− and x+ corresponding to the ICE
estimates for R and R−1, respectively, satisfy

σC
−(R)xT

+ = yT
−R

.
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INE minimization applied to R:

Let R be a nonsingular upper triangular matrix. Assume that the INE
estimates of the singular values of R and R−1 satisfy
1/σN

+ (R−1) = σN
− (R) = σ−(R). Then the INE estimates of the singular

values related to the extended matrix satisfy

1/σN
+ (R̂−1) ≤ σN

− (R̂)

with equality if and only if v is collinear with the left singular vector
corresponding to the smallest singular value of R.
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INE maximization applied to R−1 may provide a better estimate than
INE minimization applied to R:

Let R be a nonsingular upper triangular matrix. Assume that the INE
estimates of the singular values of R and R−1 satisfy
1/σN

+ (R−1) = σN
− (R) = σ−(R). Then the INE estimates of the singular

values related to the extended matrix satisfy

1/σN
+ (R̂−1) ≤ σN

− (R̂)

with equality if and only if v is collinear with the left singular vector
corresponding to the smallest singular value of R.

Rather technical in case the assumption is relaxed to

1/σN
+ (R−1) ≤ σN

− (R): the superiority of maximization does not apply

always.
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An example showing the possible gap between the ICE and

INE estimates

R =







2 0 1
1 0

1






, R−1 =







1
2 0 −1

2
1 0

1






, σ−(R) = 0.874

1/σC
+(R−1) = σC

−(R) = 1
0.8944 ≈ 1/σN

+ (R−1) < σN
− (R) = 1

It does not to be so, but we did not faced it in practical problems!
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, σ−(R) = 0.874

1/σC
+(R−1) = σC

−(R) = 1
0.8944 ≈ 1/σN

+ (R−1) < σN
− (R) = 1

R̂ =











2 0 1 1
1 0 1

1 1
1











, σ−(R̂) ≈ 0.5155

σC
−(R̂) ≡ 1/σC

+(R̂−1) ≈ 0.618

0.5381 ≈ 1/σN
+ (R̂−1) < σN

− (R̂) ≈ 0.835

It does not to be so, but we did not faced it in practical problems!
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Example: INE with maximization and minimization

0 20 40 60 80 100
10

−2

10
−1

10
0

10
1

Figure : INE estimation of the smallest singular value of the 1D Laplacians of size
one until hundred: INE with minimization (solid line), INE with maximization
(circles) and exact minimum singular values (crosses).
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Example: INE with maximization and exact smallest

singular value

50 55 60 65 70 75 80 85 90 95 100

10
−1.5

10
−1.4

10
−1.3

Figure : INE estimation of the smallest singular value of the 1D Laplacians of size
fifty until hundred (zoom of previous figure for INE with maximization and exact
minimum singular values).
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INE versus ICE

Theorem

Consider norm estimation of the extended matrix

R̂ =

[

R v
0 γ

]

,

ICE and INE start with σ+ ≡ σC
+(R) = σN

+ (R); y LSV, z RSV,

w = Rz/σ+. The approximation σN
+ (R̂) from INE is at least as good as

σC
+(R̂) from ICE if

(vT w)2 ≥ ρ1, (1)

where ρ1 is the smaller root of the quadratic equation in (vT w)2,

(vT w)4 +

(

γ2 + (vT y)2

σ2
+

(

vT v − (vT y)2
)

− vT v − (vT y)2

)

(vT w)2

+ (vT y)2

(

γ2 + vT v

σ2
+

(

(vT y)2 − vT v
)

+ vT v

)

= 0. (2)
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Example: ICE versus INE
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Figure : Value of ρ1 in dependence of (vT y)2 (x-axis) and γ2 (y-axis) with
∆ = 0, ‖v‖2 = 0.1.
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Figure : Value of ρ1 in dependence of (vT y)2 (x-axis) and γ2 (y-axis) with
∆ = 0, ‖v‖2 = 1.
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Figure : Value of ρ1 in dependence of (vT y)2 (x-axis) and γ2 (y-axis) with
∆ = 0, ‖v‖2 = 10.
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Figure : Value of ρ1 in dependence of (vT y)2 (x-axis) and γ2 (y-axis) with
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Comparison 1

Example 1: 50 matrices A=rand(100,100) - rand(100,100), dimension 100,
colamd, R from the QR decomposition of A. (Bischof, 1990, Section 4,
Test 1).
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Figure : Ratio of estimate to real condition number for the 50 matrices in
example 1. Solid line: ICE (original), pluses: INE with inverse and using only
maximization, circles: INE (original), squares: INE with inverse and using only
minimization. 24 / 33



Comparison 2

Example 2: 50 matrices A = UΣV T of size 100, prescribed condition
number κ choosing Σ = diag(σ1, . . . , σ100) with

σk = αk, 1 ≤ k ≤ 100, α = κ− 1

99 . U and V : Q factors of the QR
factorizations of B=rand(100,100) - rand(100,100), R from the QR
decomposition of A with colamd, ( Bischof, 1990, Section 4, Test 2; Duff,
Vömel, 2002, Section 5, Table 5.4).
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Figure : Ratio of estimate to real condition number for the matrices in example 2
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Comparison 3
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Figure : Ratio of estimate to real condition number for the 50 matrices in
example 2 with κ(A) = 100. Solid line: ICE (original), pluses: INE with inverse
and using only maximization, circles: INE (original), squares: INE with inverse
and using only minimization.
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Comparison 4
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Figure : Ratio of estimate to real condition number for the 50 matrices in
example 2 with κ(A) = 1000. Solid line: ICE (original), pluses: INE with inverse
and using only maximization, circles: INE (original), squares: INE with inverse
and using only minimization.
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Matrices from MatrixMarket
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Figure : Ratio of estimate to actual condition number for the 20 matrices from
the Matrix Market collection without column pivoting. Solid line: ICE (original),
pluses: INE with inverse and using only maximization, circles: INE (original),
squares: INE with inverse and using only minimization.
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Figure : Ratio of estimate to actual condition number for the 20 matrices from
the Matrix Market collection with column pivoting. Solid line: ICE (original),
pluses: INE with inverse and using only maximization, circles: INE (original),
squares: INE with inverse and using only minimization.
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Matrices from MatrixMarket: Estimates/"Exact" κ

No Name dim. nnz ICE (org) INE (orig) INE (max) INE (min)

1 494_bus 494 1666 0.09 0.06 0.99 0.02

1 (colamd) 494 1666 0.09 0.06 1 0.057

2 arc130 130 1037 0.42 4e-06 1 9e-10

2 (colamd) 130 1037 0.63 5e-06 1 5e-6

3 bfw398a 398 3678 0.29 0.005 0.83 0.004

3 (colamd) 398 3678 0.03 0.005 0.9 0.004

4 cavity04 317 5923 0.11 1e-4 0.88 3e-5

4 (colamd) 317 5923 0.13 5e-4 0.87 7e-6

5 ck400 400 2860 0.15 9e-5 0.99 8e-5

5 (colamd) 400 2860 0.09 2e-4 1 2e-5

6 dwa512 512 2480 0.16 0.005 0.97 0.003

6 (colamd) 512 2480 0.11 0.005 0.94 0.003

7 e05r0400 236 5846 0.09 5e-4 0.86 1e-4

7 (colamd) 236 5846 0.06 0.001 0.94 3e-4

8 fidap001 216 4339 0.63 0.02 0.76 0.01

8 (colamd) 216 4339 0.19 0.03 0.85 0.02

9 gre__343 343 1310 0.37 0.05 0.87 0.05

9 (colamd) 343 1310 0.33 0.025 0.9 0.023

10 impcol b 59 271 0.16 2e-4 0.98 5e-5

10 (colamd) 59 271 0.17 2e-4 0.98 5e-5 30 / 33
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Conclusions

Incremental condition estimators in the 2-norm discussed.

The two main strategies are inherently different - confirmed both
theoretically and experimentally.

INE strategy using both the direct and inverse factor is a method of
choice yielding a highly accurate 2-norm estimator.

Future work: block algorithm, using the estimator inside a incomplete
decomposition.

Many thanks to Gérard Meurant.

32 / 33



Last but not least

Thank you for your attention!

33 / 33



Last but not least

Thank you for your attention!

33 / 33



Last but not least

Thank you for your attention!

33 / 33



Last but not least

Thank you for your attention!

33 / 33


	Introduction: The Problem
	The two strategies
	INE maximization versus minimization
	INE maximization versus ICE maximization
	Numerical experiments
	Conclusions

