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Assessing quality of computed solutions

[

Estimating sensitivity to perturbations

[

Monitor and control adaptive computational processes.

@ Here: A upper triangular (no loss of generality - computations
typically based on triangular decomposition)

Euclidean norm

(]
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@ Condition number estimation is important — a lot of excellent
previous work
@ Part of standard libraries as LAPACK

@ Turing (1948); Wilkinson (1961)

o Gragg, Stewart (1976); Cline, Moler, Stewart, Wilkinson (1979);
Cline, Conn, van Loan (1982); van Loan (1987)

@ Incremental: Bischof (1990, 1991), Bischof, Pierce, Lewis (1990),
Bischof, Tang (1992); Ferng, Golub, Plemmons (1991); Pierce,
Plemmons (1992); 2-norm estimator based on pivoted QLP: Stewart
(1998); Duff, Vémel (2002)

@ l-norm: Hager (1984), Higham (1987, 1988, 1989, 1990) [175],
Higham, Tisseur (2000).

@ See also other techniques in various applications: adaptive filters,
recursive least-squares in signal processing, ACE for multilevel PDE
solvers.

@ Typically estimating lower bound for x(A).
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Introduction: The goal

@ Getting better understanding of incremental estimation methods in
2-norm.

@ Starting point: the methods by Bischof (1990) (incremental condition
number estimation - ICE) and Duff, Vémel (2002) (incremental norm
estimation - INE).

@ Discussing more accurate estimation techniques and assembling
theoretical and experimental evidence about this (note that it is often
sufficient to have the estimates within a reasonable multiplicative
factor from the exact x(A) - Demmel (1997)); matrix inverse can
provide an additional information

@ Motivated also by methods for dropping in preconditioner
computation (see Bollhéfer, Saad (2001 - 2006), Bru et al, 2008,
2010; talk by J. Kopal at the Sparse Days (2013))
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ICE - Bischof (1990)

A R v
@ Bischof (1990): estimates to extremal singular values and left singular
vectors: R =UXVT = ||ul,R| = |[ul,,USVT| = 0ewt(R)

@ ICE computes:
o, (R) = ”yg;:tR” ~ Oext(R),

ext
i e]| 5 7]

@ Sezt and ceyr: components of the eigenvector corresponding to the

extremal (minimum or maximum) eigenvalue of BS,,

198 Rl = extjs,qj=1

)

o ngt(R)Q +(yé’;tv)2 V(szctv)
B —

ext = o )
V(yextv) Y 7/33
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INE - Duff, Vémel (2002)

A R v
@ Duff, Vémel (2002): estimates to extremal singular values and right

singular vectors (originally used only to estimate the 2-norm)

@ INE computes
ol (R) = || Rzeqt|| = Text(R)

[ 2]

@ Again, sezt and ceq: components of the eigenvector corresponding to
the extremal (minimum or maximum) eigenvalue of BY,

1R2eat ]| = extyge =1

O—é\a[ct(R)Q ngtRTU

BN_

eat = T T T 2
Zeg BTV ViUt 8/33
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@ Direct and inverse factors: having both R and R~! (mixed
direct/inverse (incomplete) decompositions, some other applications)

Theorem

Computing the inverse factor R=! in addition to R does not give any
improvement for ICE (estimation of the extreme singular values and
corresponding left singular vectors):

Let R be a nonsingular upper triangular matrix. Then the ICE estimates of
the singular values of R and R~ satisfy

o%(R)=1/0C(R7Y).

The approximate left singular vectors y_ and x. corresponding to the ICE
estimates for R and R™", respectively, satisfy

o%(R) 1 =y'R
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INE maximization applied to R~—' may provide a better estimate than
INE minimization applied to R:

Let R be a nonsingular upper triangular matrix. Assume that the INE
estimates of the singular values of R and R~' satisfy

1/o¥ (R7Y) = oN(R) = 0_(R). Then the INE estimates of the singular
values related to the extended matrix satisfy

1o} (R7Y) < oN(R)

with equality if and only if v is collinear with the left singular vector
corresponding to the smallest singular value of R.

Rather technical in case the assumption is relaxed to

1/o¥ (R™') < o™ (R): the superiority of maximization does not apply
always.

v

11/33




An example showing the possible gap between the ICE and

INE estimates

1/o¢(RY) =0CR)=1

0.8944 ~ 1/o¥(R™) < oN(R) =1
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An example showing the possible gap between the ICE and

INE estimates

DN~
= o
|

DN~

1/o¢(RY) =0CR)=1
0.8944 ~ 1/o¥(R™) < oN(R) =1

— =
X
=
=
N—
X
=
o
—_
ot
(@)}

09()_1/a+(fz) 0.618
0.5381 ~ 1/0 (R™Y) < oM (R) =~ 0.835
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Example: INE with maximization and minimization

. . . .
0 20 40 60 80 100

Figure : INE estimation of the smallest singular value of the 1D Laplacians of size
one until hundred: INE with minimization (solid line), INE with maximization
(circles) and exact minimum singular values (crosses).
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Example: INE with maximization and exact smallest

singular value
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Figure : INE estimation of the smallest singular value of the 1D Laplacians of size
fifty until hundred (zoom of previous figure for INE with maximization and exact

minimum singular values).
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© INE maximization versus ICE maximization
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INE versus ICE

Theorem

Consider norm estimation of the extended matrix

A R v
ICE and INE start with o = 0§ (R) = 0¥ (R); y LSV, z RSV,
w = Rz/ot. The approximation af(}?) from INE is at least as good as
0¥ (R) from ICE if

(v w)? > p1, (1)

where py is the smaller root of the quadratic equation in (v'w)?,
2 T,)\2
+ (v
(UTw)4 4 <’Y 0—(2 y) (UTU . (UTy)2) _ Ty — (va)2> (UTw)Q
Jr

+  (vTy)? (% ((va)2 — vTv) + UTU> = 0. (2)




Example: ICE versus INE

Figure : Value of p; in dependence of (vTy)? (x-axis) and v? (y-axis) with
A =0, |v||*=0.1.
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Figure : Value of p; in dependence of (vTy)? (x-axis) and v? (y-axis) with
A=0,|v|*=1.
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Figure : Value of p; in dependence of (vTy)? (x-axis) and 7? (y-axis) with
A =0, [|o|? = 10.

19/33



Example: ICE versus INE

Figure : Value of p; in dependence of (vTy)? (x-axis) and v? (y-axis) with
A =0.6, |v]|? =0.1.
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Figure : Value of p; in dependence of (vTy)? (x-axis) and v? (y-axis) with
A =06, |v]?=1.
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Example: ICE versus INE

Figure : Value of p; in dependence of (vTy)? (x-axis) and 7? (y-axis) with
A= 0.6, [[v]2 = 10.
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© Numerical experiments
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Example 1: 50 matrices A=rand(100,100) - rand(100,100), dimension 100,
colamd, R from the QR decomposition of A. (Bischof, 1990, Section 4,
Test 1).

Figure : Ratio of estimate to real condition number for the 50 matrices in
example 1. Solid line: ICE (original), pluses: INE with inverse and using only
maximization, circles: INE (original), squares: INE with inverse and using only

e . 24 /33
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Example 2: 50 matrices A = ULV of size 100, prescribed condition
number x choosing ¥ = diag(oq,...,0100) With

o = ak, 1<k<100, o= K95, U and V: Q factors of the QR
factorizations of B=rand(100,100) - rand(100,100), R from the QR
decomposition of A with colamd, ( Bischof, 1990, Section 4, Test 2; Duff,
Voémel, 2002, Section 5, Table 5.4).

1

09r

25/33



0.7F

0.6

0.5

0.4

0.3F

0.2

. . . .
0 10 20 30 40 50

Figure : Ratio of estimate to real condition number for the 50 matrices in
example 2 with x(A) = 100. Solid line: ICE (original), pluses: INE with inverse
and using only maximization, circles: INE (original), squares: INE with inverse
and using only minimization.
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Figure : Ratio of estimate to real condition number for the 50 matrices in
example 2 with x(A) = 1000. Solid line: ICE (original), pluses: INE with inverse
and using only maximization, circles: INE (original), squares: INE with inverse
and using only minimization.
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Matrices from MatrixMarket
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Figure : Ratio of estimate to actual condition number for the 20 matrices from
the Matrix Market collection without column pivoting. Solid line: ICE (original),
pluses: INE with inverse and using only maximization, circles: INE (original),
squares: INE with inverse and using only minimization.
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Figure : Ratio of estimate to actual condition number for the 20 matrices from
the Matrix Market collection with column pivoting. Solid line: ICE (original),
pluses: INE with inverse and using only maximization, circles: INE (original),
squares: INE with inverse and using only minimization.
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Matrices from MatrixMarket: Estimates/"Exact" x

No Name dim. | nnz | ICE (org) | INE (orig) | INE (max) | INE (min)
1 494_bus | 494 | 1666 0.09 0.06 0.99 0.02
1 | (colamd) | 494 | 1666 | 0.09 0.06 1 0.057
2 arc130 130 | 1037 0.42 4e-06 1 9e-10
2 | (colamd) | 130 | 1037 0.63 5e-06 1 5e-6
3 bfw398a 398 | 3678 0.29 0.005 0.83 0.004
3 (colamd) | 398 | 3678 0.03 0.005 0.9 0.004
4 cavity04 317 | 5923 0.11 le-4 0.88 3e-5
4 (colamd) 317 | 5923 0.13 5e-4 0.87 Te-6
5 ck400 400 | 2860 0.15 9e-5 0.99 8e-5
5 | (colamd) | 400 | 2860 0.09 2e-4 1 2e-5
6 dwab12 512 | 2480 0.16 0.005 0.97 0.003
6 (colamd) | 512 | 2480 0.11 0.005 0.94 0.003
7 e05r0400 | 236 | 5846 0.09 5e-4 0.86 le-4
7 | (colamd) | 236 | 5846 | 0.06 0.001 0.04 3e-4
8 fidap001 216 | 4339 0.63 0.02 0.76 0.01
8 (colamd) | 216 | 4339 0.19 0.03 0.85 0.02
9 | gre__343 | 343 | 1310 0.37 0.05 0.87 0.05
9 (colamd) | 343 | 1310 0.33 0.025 0.9 0.023
10 | impcol b 59 271 0.16 2e-4 0.98 5e-5
10 | (colamd) | 59 | 271 0.17 2e-4 0.98 5e-5 5
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Conclusions

@ Incremental condition estimators in the 2-norm discussed.

@ The two main strategies are inherently different - confirmed both
theoretically and experimentally.

@ INE strategy using both the direct and inverse factor is a method of
choice yielding a highly accurate 2-norm estimator.

@ Future work: block algorithm, using the estimator inside a incomplete
decomposition.

Many thanks to Gérard Meurant.
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