
Approximate inverse preconditioners with
adaptive dropping ∗

Jiřı́ Kopal†, Miroslav Rozložnı́k, Miroslav Tůma‡

July 4, 2013

Keywords: approximate inverse, Gram–Schmidt orthogonalization, incomplete de-
composition, preconditioned iterative method.
Abstract

It is well-known that analysis of incomplete Cholesky and LU decompositions with
a general dropping is very difficult and of limited applicability, see, for example, the
results on modified decompositions [1], [2], [3] and later results based on similar con-
cepts. This is true not only for the dropping based on magnitude of entries but it also
applies to algorithms that use a prescribed sparsity pattern.

This paper deals with dropping strategies for a class of AINV-type incomplete de-
compositions [4] that are based on the generalized Gram–Schmidt process. Its be-
havior in finite precision arithmetic has been discussed in [5]. This analysis enables
better understanding of the incomplete process, and the main goal of the paper is to
propose a new adaptive dropping strategy and to illustrate its efficiency for problems
in structural mechanics.

1 Introduction

Iterative methods are widely used for the solution of large sparse linear systems

Ax = b, (1)

where A is the n × n system matrix, x is the vector of unknowns and b is the right-
hand-side. A large source of such systems are discretizations of partial differential

∗Partially supported by the projects P201/13-06684S and 108/11/0853 of the Grant Agency of the
Czech Republic.
†Technical University of Liberec, Department of Mathematics, Liberec (jiri.kopal@tul.cz)
‡Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou věžı́

2, 182 07 Prague 8, Czech Republic, (miro@cs.cas.cz, tuma@cs.cas.cz).

1

equations that arise in many applications in science and engineering and that often
provide sparse matrices. In order to increase the robustness of iterative methods, sys-
tem (1) should be transformed by preconditioning. In this paper we will consider
only symmetric and positive definite systems. There are two basic general purpose
classes of preconditioners [6] for the conjugate gradient method, that is the method
of choice here. Namely, incomplete Cholesky factorizations and factorized approxi-
mate inverses. Both of them can be value-based in which the locations of permissible
fill entries are determined together with the numerical factorization of A; the entries
in the computed factors or intermediate quantities that exceed a prescribed threshold
are dropped. The success of such approach often depends on being able to choose a
suitable threshold, and this can be highly problem dependent.

Approximate inverse preconditioners are based on representing the inverse A−1 via
incomplete decomposition Z̃Z̃T with the upper triangular factor Z̃. The system (1)
preconditioned from both sides can be then written as

Z̃TAZ̃y = Z̃T b, x = Z̃y. (2)

Practical preconditioners have to be sparse. This is achievable for standard incom-
plete decompositions, but it is more difficult for the approximate inverse decomposi-
tions since they may fill very quickly. Further, preconditioners should be as accurate
as possible. In the ideal case, we may easily detect and drop those entries that do not
significantly contribute to the accuracy of computed factors. The analysis in [5] moti-
vates us to find tools useful for decision which nonzero fill-in entries do not improve
this accuracy. Consequently, such entries can be dropped. We will illustrate that their
detection can be based on monitoring such intermediate quantities as the loss of A-
orthogonality between the column vectors in the factor Z̃ and the conditioning of the
factor Ũ (that represents an approximation to the transpose of the Cholesky factor of
A). We will attempt to keep the conditioning Ũ as low as possible by combining the
dropping strategy with pivoting that approximately minimizes the estimate for κ(Ũ).
Based on the results for some test matrices from structural engineering, we will see
that this approach leads to rather powerful and still sparse preconditioners. Note that
the loss of A-orthogonality ‖Z̃TAZ̃ − I‖ as well as the norm ‖A−1 − Z̃Z̃T‖ play
a similar role as the quantities ‖I − L̃−1AL̃−T‖ and ‖A − L̃L̃T‖ in the incomplete
Cholesky factorization, see [7].

This paper represents a continuation of the research published in [8]. The analysis
has been refined and the accompanying software was extended. The paper is orga-
nized as follows. In Section 2 we present basics of the underlying theory. Section
3 presents the scheme of our approach called a posteriori filtering with experimental
results. We consider our contribution being a step on the way to construct incomplete
decompositions with a better understanding of the dropping process.

2

2 The generalized Gram–Schmidt process

The term generalized Gram–Schmidt process is used here to denote the orthogonaliza-
tion with the non–standard inner product induced by a symmetric and positive definite
matrix A. The column vectors of the matrix Z(0) = [z

(0)
1 z

(0)
2 . . . z

(0)
n] (initial basis)

are orthogonalized against previously computed columns in Z. In exact arithmetic,
all variants of the generalized Gram–Schmidt process lead to the factors Z and U
satisfying Z(0) = ZU such that ZTAZ = I and

(Z(0))TAZ(0) = UTU (Cholesky factorization), (3)

A−1 = ZZT (inverse triangular factorization). (4)

The generalized Gram–Schmidt process is summarized in Algorithm 1 where Z =
[z1 z2 . . . zn] and U = [uj,i]. Note that here we consider the modified version of the
generalized Gram–Schmidt process.

Algorithm 1 Modified version of the generalized Gram–Schmidt process
for i := 1→ n do

for j := 1→ i− 1 do
uj,i := 〈z(j−1)i , zj〉A
z
(j)
i := z

(j−1)
i − uj,izj

end for
ui,i := 〈z(i−1)i , z

(i−1)
i 〉1/2A

zi := z
(i−1)
i /ui,i

end for

In finite precision arithmetic, the identities (3) and (4) are no longer valid. In the
following, we will use the notation with bar (e.g. Z̄, Ū) for the quantities computed
in finite precision arithmetic with no other dropping (i.e. for the complete Gram–
Schmidt process). The bounds for the quantities ‖Z(0) − Z̄Ū‖, ‖Z̄TAZ̄ − I‖ and
‖(Z(0))TAZ(0) − ŪT Ū‖ for the main versions of the generalized Gram–Schmidt pro-
cess have been derived in [5]. Even in the presence of rounding errors these algorithms
produce the matrices Z̄ and Ū that are good approximations to the identities (3) and
(4). But such computation is inevitably time consuming because it leads to rather
dense factors. For preconditioning we have to use their incomplete versions. In order
to distinguish we will use the notation with tilde (e.g. Z̃, Ũ) for computed quantities
in incomplete decompositions with appropriate dropping.

As noted above, the incomplete algorithm relaxes the decomposition by dropping
small entries (small in some well defined sense). The choice of a specific strategy
depends on properties of individual algorithm possibly taking into account also some
target computational architecture. It has been shown in [4] that such strategy used
in the context of the generalized Gram–Schmidt process may produce a good and
competitive preconditioner. Nevertheless, the choice of the optimum drop tolerance

3

may be difficult. Up to now, there has not been proposed a better way to find it than
by trial-and-error.

In the following we propose a new approach which turns out to be a safe and ef-
ficient strategy. We assume that the algorithm is started with the initial vector basis
Z(0) = I . In the numerical experiments presented here we use only the matrix bc-
sstk07 from structural mechanics (see the MatrixMarket collection). It has a small di-
mension 420 that enables us to show very detailed results. However, we have obtained
very similar results for the whole group of matrices arising from other engineering
problems.

3 Adaptive dropping by a posteriori filtering

Here we will deal with the incomplete version of the generalized Gram–Schmidt pro-
cess that was introduced above. The algorithm is based on dropping nonzero entries
less than an adaptive drop tolerance τi prescribed in individual major steps i of the pro-
cess. The strategy explained below is motivated by a natural demand to get the residual
norms of the approximately computed columns z̃i in Z̃i on the same level of accuracy.
As a theoretical motivation, we consider the complete Gram–Schmidt process, that is
the process computed in the floating-point arithmetic without any dropping. Having
the initial basis Z(0) = I , its i-th step provides the leading principal submatrices Ūi
and Z̄i, such that

ŪiZ̄i − Ii = ∆Ei, ∆Ei = [δe1 δe2 . . . δei] (5)

for some residual matrix ∆Ei. Based on our experiments and without going into
details we assume that

‖∆Ei‖ ≤ ε O(i3/2)‖Ūi‖‖Z̄i‖ (6)

Consider the i-th column residuals of the vectors z̃i and ẑi in the form

Ũiz̃i − ei and Ũiẑi − ei, (7)

where the i-th vector z̃i is the resulting vector obtained from ẑi after dropping and ẑi
was evaluated using previously computed vectors of Z̃ as

ẑi =

z
(0)
i −

i−1∑
k=1

α̃kiz̃k

‖z(0)i −
i−1∑
k=1

α̃kiz̃k‖A
=

ẑ
(i−1)
i

‖ẑ(i−1)i ‖A
. (8)

This formula does not consider the roundoff error that should be typically much
smaller than any explicit dropping. Let us denote by δzi = z̃i − ẑi the error from
this additional dropping. In this way we get

δzi = Ũ−1i

[
(Ũiz̃i − ei)− (Ũiẑi − ei)

]
. (9)

4

Naturally, the perturbation δzi caused by the dropping should not exceed the residual
norm multiplied by the norm of Ũ−1i in its magnitude. Further, we assume that both
‖Ũiz̃i − ei‖ ≤ τi‖Ũi‖‖ẑi‖∞ and ‖Ũiẑi − ei‖ ≤ τi‖Ũi‖‖ẑi‖∞. This corresponds to
the assumption for the floating-point process in (6), but it also corresponds to the
perturbation caused just by evaluating the residual (7).

Putting everything together and asking for a uniform bound enforced by a given
parameter τ < 1 we have

‖δzi‖∞ ≤ τi‖Ũi‖‖Ũ−1i ‖‖ẑi‖∞. (10)

In this way we get
‖δzi‖∞
‖ẑi‖∞

≈ τi ≤
τ

κ(Ũi)
. (11)

As we can see, keeping the uniform bound on the residual norms leads to the adap-
tive dropping in the decomposition steps with the drop tolerance τi. This new drop-
ping technique based on monitoring the condition number for Ũi will be called the
a posteriori filtering. Further, the singular values interlacing property [9] κ(Ũ1) ≤
κ(Ũ2) ≤ · · · ≤ κ(Ũi) ≤ · · · ≤ κ(Ũn) implies that the sequence of drop tolerances
τi is non-increasing. Typically, the relative error ||δzi||∞/||ẑi||∞ should decrease as
κ(Ũ2) increases. Note that the proposed dropping strategy does not depend on the
conditioning of the whole problem, but only on the local conditioning. Therefore, a
natural practical strategy is to keep the increase in the sequence of the local condition
numbers κ(Ũi) as small as possible. As we will see later, this can be achieved by
appropriate preprocessing.

The a posteriori filtering algorithm is put down in Matlab-like notation as Algo-
rithm 2. It is clear from (11) that normalizing of the system matrix before dropping
is not necessary because the dropping is scaled internally. The mask is the vector
of boolean variables. All nonzeros in the vector ẑ(i−1)i smaller than τi multiplied by
‖ẑ(i−1)i ‖∞ are marked as zero in the mask vector (the first line). Second line in the
algorithm safeguards the diagonal entries. In examples presented here we will see that
the a posteriori filtering seems to be especially very suitable for sequences of matri-
ces Ũi where κ(Ũi) grows slowly with i. Algorithm 1 extended by the a posteriori
filtering (Algorithm 2) is put down here as Algorithm 3. There is a lot of ways to
estimate κ(Ũi). Here we use the condition number estimate based on the fraction of
the maximum over the minimum diagonal entry of Ũi.

Algorithm 2 A posteriori filtering based on conditioning of Ũk

mask := |ẑ(i−1)i | ≥ τ‖ẑ(i−1)
i ‖∞
κ(Ũi)

maski := 1
z̃
(i−1)
i := ẑ

(i−1)
i . ∗mask

Figure 1 demonstrates that CG achieves a good convergence rate for all considered
values of τ . Nevertheless, the preconditioner may be still considered rather dense

5

Algorithm 3 Modified generalized GS with a posteriori filtering
for i := 1→ n do

for j := 1→ i− 1 do
ũj,i := 〈ẑ(j−1)i , z̃j〉A
ẑ
(j)
i := ẑ

(j−1)
i − ũj,iz̃j

end for
ũ
(0)
i,i := 〈ẑ(i−1)i , ẑ

(i−1)
i 〉1/2A

mask := |ẑ(i−1)i | ≥ τ‖ẑ(i−1)i ‖∞/κ(Ũi)
maski := 1
z̃
(i−1)
i := ẑ

(i−1)
i . ∗mask

ũi,i := 〈z̃(i−1)i , z̃
(i−1)
i 〉1/2A

z̃i := z̃
(i−1)
i /ũi,i

end for

as we can see the nonzero count nnz(Z̃). The reason for this effect is revealed in
Figure 2 depicting fast growth of the condition number of Ũi as well as the relatively
dense sparsity pattern of Z̃. Motivated by this result, the subsequent part of the paper
proposes a way to obtain sparser preconditioners, but let us remind that the structural
and accuracy effects are typically coupled.

4 A posteriori filtering and matrix reordering

An important tool that may help to make preconditioners sparser and often even more
useful is their preprocessing. We will show that a specific matrix reordering may
significantly improve the computed matrix Z̃ in this respect. We will choose the re-
ordering such that it approximately minimizes the growth of the conditioning of the
leading principal submatrices Ũi. We will demonstrate that this approach is able to
provide factor Z̃ such that the partial decomposition captures largest eigenvalues of A
first, see the concept of partial factorization in [10]. In order to estimate a potential of
this approach, consider the permuted matrix Å = P TAP = ŮT Ů , Ů = [̊ui,j], where
P is a permutation matrix, such that the entries of Ů hold following inequalities

1. ů2i,i ≥
j∑
k=i

ů2k,j, ∀j = i+ 1, . . . , n,

2. ů1,1 ≥ ů2,2 ≥ . . . ≥ ůn,n ,

3. ůi,i > |̊ui,j|, ∀j = i+ 1, . . . , n.

Figures 3 and 4 for our permuted matrix show that the convergence rate of CG
have similar properties as above but nnz(Z̃) has been significantly reduced. Clearly,
this reordering improves the curve of the conditioning of Ũi, and together with the
a posteriori filtering it enables to drop safely much more entries. The situation is

6

0 50 100 150 200

10
−10

10
−5

10
0

Iteration n

B
a
c
k
w

a
rd

 e
rr

o
r

CG convergence

0.05

0.1

0.2

0.4

0.6

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

10
x 10

4

 10 %

 20 %

 30 %

 40 %

 50 %

 60 %

 70 %

 80 %

 90 %

 100 %

n
n
z
(Z

)

τ

Number of nonzeros

Figure 1: Figures corresponding to the Algorithm 3. Figure on the left depicts con-
vergence curves of CG preconditioned by Z̃ for a few values of τ . Figure on the
right shows dependency on the nonzero count in the Z̃ factor on τ . Dotted horizon-
tal lines denote ratio of the nonzero counts with respect to a dense triangular factor
((n2 +n)/2 nonzero entries). Dashed horizontal line highlights the number of nonze-
ros in A (nnz(A)).

50 100 150 200 250 300 350 400
10

0

10
1

10
2

10
3

10
4

Step i

κ
(U

i)

Conditioning of U
i

0.05

0.1

0.2

0.4

0.6

0.8

0 100 200 300 400

0

50

100

150

200

250

300

350

400

nz = 39344

Structure of nonzeros in Z, τ = 0.8

Figure 2: Figures corresponding to the Algorithm 3. Figure on the left depicts de-
pendency of the conditioning of the leading principal submatrices Ũi on i. Figure on
the right shows the sparsity structure of the preconditioner for the largest considered
τ = 0.8.

7

0 50 100 150 200

10
−10

10
−5

10
0

Iteration n

B
a
c
k
w

a
rd

 e
rr

o
r

CG convergence

0.05

0.1

0.2

0.4

0.6

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5
x 10

4

 10 %

 20 %

n
n
z
(Z

)

τ

Number of nonzeros

Figure 3: Figures corresponding to the Algorithm 3 on the permuted matrix Â. Figure
on the left depicts convergence curves of CG preconditioned by Z̃ for a few values
of τ . Figure on the right shows the dependency of nonzero counts in the Z̃ factor
on τ . Dotted horizontal lines denotes ratio of the nonzero count related to the dense
triangular factor ((n2 + n)/2 nonzero entries). Dashed horizontal line highlights the
nonzero count in the matrix A (nnz(A)).

apparent from Figures 2 and 4. The structure of nonzeros in Z̃ has a specific shape
as it often happens when using this type of reordering. In particular, the first few
of principal leading submatrices Z̃i have very sparse (nearly diagonal) pattern. The
exact reordering of this kind is expensive but in the next section we will present its
computationally efficient variant based on approximate pivoting.

5 A posteriori filtering and pivoting

In order to get a practical strategy, the expensive static reordering from the previous
subsection cannot be used. We will demonstrate here that it is possible to replace the
a priori reordering by a pivoting performed in the course of the incomplete decompo-
sition. We propose an approach based on a specific combination of the left-looking
algorithm and the Cholesky factorization, although a right-looking implementation of
the approximate inverse decomposition may be still used [4]. Formula (12) shows how
the computed vector zi can be used to update the A–norms of the vectors, which were
not yet A–orthogonalized (here it is described, for simplicity, in exact arithmetic).

‖z(k)i ‖2A = (u
(k)
i,i)2 = a2i,i −

k∑
j=1

〈zi, z(0)j 〉2A, k = 0, . . . , i− 1, (u
(i−1)
i,i)1/2 = ui,i

(12)
In this way, the pivoting is easy and cheap to compute. For the incomplete algorithm
this precomputation of pivots (12) may lead to a useful reordering as we demonstrate
later.

The incomplete Algorithm 3 extended by the Cholesky-based approximate piv-

8

50 100 150 200 250 300 350 400
10

0

10
1

10
2

10
3

10
4

Step i

κ
(U

i)

Conditioning of U
i

0.05

0.1

0.2

0.4

0.6

0.8

0 100 200 300 400

0

50

100

150

200

250

300

350

400

nz = 5275

Structure of nonzeros in Z, τ = 0.8

Figure 4: Figures corresponding to the Algorithm 3 applied to the permuted matrix Â.
Figure on the left depicts dependency of the conditioning of the leading principal sub-
matrices Ũi on i. Figure on the right shows the sparsity structure of the preconditioner
for the largest considered τ = 0.8.

Algorithm 4 Modified generalized GS with a posteriori filtering and Cholesky based
pivoting
Z(0) = I
d(1) := diag(A)
for i := 1→ n− 1 do

if i > 1 then
for j := i→ n do
d
(i)
j = d

(i−1)
j − 〈z̃i−1, z(0)j 〉2A

end for
end if
k = argmax

i≤l≤n
(d

(i)
l)

swap columnsi,k(Z
(0))

swap entriesi,k(d
(i))

for j := 1→ i− 1 do
ũj,i := 〈ẑ(j−1)i , z̃j〉A
ẑ
(j)
i := ẑ

(j−1)
i − ũj,iz̃j

end for
ũ
(0)
i,i = 〈ẑ(i−1)i , ẑ

(i−1)
i 〉1/2A

mask = |ẑ(i−1)i | ≥ τ‖ẑ(i−1)i ‖∞/κ(Ũi)
k = argmax

1≤l≤n
([Z(0)]l,i)

maskk = 1
z̃
(i−1)
i = ẑ

(i−1)
i . ∗mask

ũi,i = 〈z̃(i−1)i , z̃
(i−1)
i 〉1/2A

z̃i = z̃
(i−1)
i /ũi,i

end for

9

0 50 100 150 200

10
−10

10
−5

10
0

Iteration n

B
a
c
k
w

a
rd

 e
rr

o
r

CG convergence

0.05

0.1

0.2

0.4

0.6

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5
x 10

4

 10 %

 20 %

n
n
z
(Z

)

τ

Number of nonzeros

Figure 5: Figures corresponding to the Algorithm 4. Figure on the left depicts con-
vergence curves of CG preconditioned by Z̃ for a few values of τ . Figure on the
right shows dependency the of nonzeros in the Z̃ factor on τ . Dotted horizontal lines
denotes percentage of the nonzeros with respect dense triangular factor ((n2 + n)/2
nonzero entries). Dashed horizontal line highlights number of nonzeros in the matrix
A (nnz(A)).

oting is put down as Algorithm 4. The vector d(j) contains the approximately up-
dated diagonal entries used as pivots. The formula k = argmax

i≤l≤n
(d

(i)
l) finds the

pivot entry having the largest magnitude in the i-th step. The swap operations in-
terchange corresponding values with respect to the position of the pivot. Moreover,
swap columnsi,k(Z

(0)) swaps also the indices of the vectors z(0)i and z(0)k . The index
k obtained as k = argmax

1≤l≤n
([Z(0)]l,i) denotes the position of the pivot in the vector

z
(0)
i . The permutation introduced in the algorithm can be interpreted as running the

generalized Gram–Schmidt process with Z(0) equal to the corresponding permutation
matrix. The permutation is not known a priori, and Z(0) is then computed on-the-fly
using (12). Consequently, Z̃ does not need to have the upper triangular form. Note
that in our figures showing nonzero pattern we then deal with (Z(0))T Z̃ which is for
the non-pivoted Algorithm 3 trivially equal to Z̃.

The Algorithm 4 can be implemented efficiently in the fully sparse mode [4]. Fig-
ures 5 and 6 show that the results are qualitatively the same as when using a priori
static reordering. In particular, the results seem to be good from many possible points
of view: iteration count, nnz(Z̃), limiting the work in the most crucial part to just a
limited number of a dense vectors. Note that our results for the chosen matrix rep-
resent qualitatively the same results for the whole class of matrices from structural
mechanics. The fact that a posteriori filtration with dynamic pivoting is able to im-
prove approximation properties of Z̃TAZ̃ significantly is demonstrated in Figure 7. It
is clear that the strategy of this Section spreads the spectrum in the subsequent steps
of the decomposition much less. The results point out that the theoretically motivated
a posteriori filtration with pivoting leads to a rather powerful approximate inverse pre-
conditioning.

10

50 100 150 200 250 300 350 400
10

0

10
1

10
2

10
3

10
4

Step i

κ
(U

i)

Conditioning of U
i

0.05

0.1

0.2

0.4

0.6

0.8

0 100 200 300 400

0

50

100

150

200

250

300

350

400

nz = 6064

Structure of nonzeros in (Z
(0)

)
T
 Z, τ = 0.8

Figure 6: Figures corresponding to the Algorithm 4 on reordered matrix A. Figure
on the left depicts dependency of the conditioning of the leading principal submatri-
ces Ũi on i. Figure on the right shows the number of nonzeros in the matrix of the
preconditioner for the largest cosidered τ = 0.8.

50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

E
ig

e
n
v
a
lu

e
 m

a
g
n
it
u
d
e

Step i

Eigenvalues of the leading principal

 submatrices of Z
T
AZ, τ = 0.2

50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

E
ig

e
n
v
a
lu

e
 m

a
g
n
it
u
d
e

Step i

Eigenvalues of the leading principal

 submatrices of Z
T
AZ, τ = 0.05

Figure 7: Figures showing eigenvalues of the leading principal submatrices of the
matrix Z̃TAZ̃ providing similar iteration counts. The results for the basic a posteriori
filtering without reordering (iters = 20, nnz(Z̃) = 60659) is depicted on the left, the
results for the a posteriori with dynamic pivoting (iters = 23, nnz(Z̃) =19827) are on
the right.

11

6 Conclusions

This paper gives a new insight into the behavior of the generalized Gram–Schmidt
based preconditioning. In particular, it proposes a new dropping strategy that seems
to provide preconditioners that are sparse and powerful at the same time. The strategy
is theoretically motivated and it naturally introduces adaptivity into the dropping. The
theoretical insight is accompanied by some experimental results for a matrix arising
in structural mechanics. Although we consider here only one matrix, the experiments
represent a wider class of the real-world problems. Our future research will include
the extension to the standard incomplete Cholesky decomposition by exploiting its
tight connection with the considered approximate inverse decomposition.

Acknowledgement

This work was supported by Grant Agency the Czech Republic under the project
108/11/0853 and the project P201/13-06684S of the Grant Agency of the Czech Re-
public.

References
[1] T. Dupont, R.P. Kendall, H.H.J. Rachford, “An Approximate Factorization Pro-

cedure for the Solving Self-Adjoint Elliptic Difference Equations”, SIAM J.
Numer. Anal., 5: 559–573, 1968.

[2] I. Gustafsson, “A class of first order factorization methods”, BIT, 18(2): 142–
156, 1978.

[3] M. Bern, J.R. Gilbert, B. Hendrickson, N. Nguyen, S. Toledo, “Support-graph
preconditioners”, SIAM J. Matrix Anal. Appl., 27(4): 930–951, 2006.

[4] M. Benzi, C.D. Meyer, M. Tůma, “A sparse approximate inverse preconditioner
for the conjugate gradient method”, SIAM J. Sci. Comput., 17(5): 1135–1149,
1996.

[5] M. Rozložnı́k, M. Tůma, A. Smoktunowicz, J. Kopal, “Rounding error analysis
of orthogonalization with a non-standard inner product”, BIT Numer Math, 52:
1035–1058, 2012.

[6] M. Benzi, “Preconditioning techniques for large linear systems: a survey”, J.
Comput. Phys., 182(2): 418–477, 2002.

[7] E. Chow, Y. Saad, “Experimental study of ILU preconditioners for indefinite
matrices”, J. Comput. Appl. Math., 86(2): 387–414, 1997.

12

[8] J. Kopal, M. Rozložnı́k, M. Tůma, “Approximate Inverse Preconditioning for
the Conjugate Gradient Method”, in B.H.V. Topping, P. Iványi (Editors), Pro-
ceedings of the Third International Conference on Parallel, Distributed, Grid
and Cloud Computing for Engineering. Civil-Comp Press, Stirlingshire, United
Kingdom, 2013, URL http://dx.doi.org/10.4203/ccp.101.21,
paper 21.

[9] G.H. Golub, C.F. Van Loan, Matrix Computations. 3rd ed., The Johns Hopkins
University Press, Baltimore and London, 1996.

[10] S. Bellavia, J. Gondzio, B. Morini, “A Matrix-Free Preconditioner for Sparse
Symmetric Positive Definite Systems and Least-Squares Problems”, SIAM J.
Sci. Comput., 35(1): 192–211, 2013.

13

