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Abstract

We study numerical behavior of stationary single- or two-step matrix splitting iteration methods for solving
large sparse systems of linear equations. We show that inexact solutions of inner linear systems associated with
the matrix splittings may considerably influence the convergence and the accuracy of the approximate solutions
computed in finite precision arithmetic. For a general stationary matrix splitting iteration method, we analyze two
mathematically equivalent implementations and find the corresponding componentwise or normwise forward or
backward stable implementation.

Keywords: matrix splitting, stationary iteration method, convergence rate, rounding error analysis, backward
error.
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1 Introduction

We consider an iterative solution of the large sparse systemof linear equations

Ax= b, A∈ C
n,n and b∈ C

n, (1.1)

whereA is a nonsingular and, in general, a non-Hermitian matrix, and b is the corresponding right-hand side vector.
Many iteration methods for the linear system (1.1) are basedon efficient splittings of the coefficient matrixA in
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the formA = M−N, whereM is a nonsingular matrix such that a linear system with the coefficient matrixM is
easily solvable. The classical examples are theJacobi, theGauss-Seideland thesuccessive overrelaxation(SOR)
iteration methods [31, 19, 18, 20], in which the matrixA is split into its diagonal, off-diagonal and triangular parts,
giving rise to the diagonal and the lower/upper triangular matricesM, respectively; see [32, 33] and the references
therein. The modern examples are theHermitian and skew-Hermitian splitting(HSS) iteration method [9] and its
variants such as PMHSS (preconditioned and modified Hermitian and skew-Hermitian splitting) [7], in which the
matrix A is split into its Hermitian and skew-Hermitian parts, giving rise to the shifted Hermitian and the shifted
skew-Hermitian matricesM; see also [11, 5, 6] and the references therein. In general, the HSS iteration method
belongs to the framework of two-step matrix splitting iteration methods [14, 3, 4], which, for given two splittings
A= M1−N1 andA = M2−N2 with M1 andM2 being nonsingular, iterates alternately between these twosplittings
in an analogous fashion to the classicalalternating direction implicit(ADI ) iteration method for solving partial
differential equations [27, 16]; see also [8, 10] and the references therein.

In some cases, computing the exact solution of a linear system with the coefficient matrixM (or M1 or M2) can
be expensive and impractical in actual implementations. Tofurther improve the computing efficiency, we usually
solve this linear system, called the inner linear system, byanother iteration scheme to some prescribed accuracy,
resulting in an inexact or an inner/outer iteration method;see [12, 9, 11, 6]. For example, in the category of two-
stage matrix splitting iteration methods, a linear system with the coefficient matrixM is solved iteratively by an
inner iteration scheme based on another splittingM = F −G, with F being a nonsingular matrix; see [26, 25, 13].
This two-stage matrix splitting iteration method has been studied intensively by many authors in the literature,
see, e.g., [17, 12, 2, 15] and the references therein. The inexact solution of the inner linear system may cause
two important effects on the numerical behavior of the overall matrix splitting iteration process, i.e., a certain
convergence delay of the iteration sequence and a possible accuracy limit on the computed approximate solution.
By the componentwise or the normwise backward error analysis [20], in this paper we will prescribe the tolerance
τ (or the tolerancesτ1 andτ2) for the inner iteration method, with respect to the splitting matrixM (or the splitting
matricesM1 andM2), in a single (or a two-step) iteration process, which equivalently determines the number of the
inner iteration steps. In other words, we interpret each computed approximate solution of an inner linear system
as an exact solution of a perturbed linear system, where the relative perturbation of the coefficient matrix of the
inner linear system, measured either by the size of its components or by its norm, is bounded by the parameterτ
(or the parametersτ1 andτ2), being of the ideal orderτ = O(u) (or τ1, τ2 = O(u)) for a backward stable method,
but being much larger than the roundoff unitu in practical implementations.

In this paper, we concentrate on the question what is the bestaccuracy we can obtain from such inexact schemes
when implemented in finite precision arithmetic. The fact that the inner solution tolerance strongly influences the
accuracy of the computed iterates is known and was studied inseveral contexts [9, 29, 30, 11, 23, 24]. Station-
ary iterative methods with the inner linear systems solved to working accuracy have been analyzed in [21, 15].
However, significantly less is known for iteration methods that use the inexact nontrivial splittings. We will also
analyze the maximum attainable convergence delay of inexact two-step splitting iteration methods in terms of these
parameters and in terms of spectral properties of corresponding splitting matrices. In this sense we extend the work
achieved in [21] and give similar results to [23, 24]. In our work, we will analyze two mathematically equivalent
implementations and point out that the one that is componentwise or normwise forward or backward stable. Given
a computed approximate solution ˆx to the linear system (1.1), an iteration method is called componentwise forward
stable if the error ˆx−x satisfies the bound|x̂−x| ≤ O(u) |A−1||A||x|, and is called normwise forward stable if the
Euclidean norm of the error satisfies the bound‖x̂− x‖ ≤ O(u)‖A−1‖‖A‖‖x‖. Similarly, an iteration method is
called componentwise backward stable if the residualb−Ax̂ satisfies|b−Ax̂| ≤ O(u)(|A||x̂|+ |b|), and is called
normwise backward stable if the Euclidean norm of the residual satisfies‖b−Ax̂‖ ≤ O(u)(‖A‖‖x̂‖+‖b‖).

The organization of the paper is as follows. In Section 2 we derive the main results on the convergence delay and
maximum attainable accuracy for stationary (single-step)matrix splitting iteration methods. Section 3 is devoted to
the analysis of the stationary two-step matrix splitting iteration methods. In Section 4, we review the HSS and the
PMHSS iteration methods [9, 7], describe two experimental examples where the tested linear systems arise, and
state the computing settings that are followed in the implementations. The numerical results are given in Section 5.
Finally, in Section 6, we end the paper by a few concluding remarks.

Throughout the paper, we adopt the following notations and concepts. The termI denotes the identity matrix
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of suitable dimension and the symbol‖ · ‖ indicates the Euclidean norm of either a vector or a matrix. For a given
vectorx and matrixX, |x| and|X| stand for their absolute values, and‖x‖ and‖X‖ stand for their Euclidean norms,
respectively. WhenX is a square and nonsingular matrix, we use the quantityκ(X) = ‖X‖‖X−1‖ to represent
its Euclidean-norm condition number. Note thatκ(X) = κ(X−1). For a square matrixX, we denote byρ(X) its
spectral radius. For distinction with their exact arithmetic counterparts, we denote quantities computed in finite
precision arithmetic by using an extra upper-hat. In addition, we assume the standard model for floating-point
computations and denote byu the unit roundoff. The termO(u) is a low-degree polynomial in the problem
dimensionn multiplied by the unit roundoffu. It is independent of the system parameters but is dependenton
details of the computer arithmetic. For simplicity, we do not evaluate the terms proportional to higher powers ofu
and also occasionally skip the technical details that wouldnegatively affect the presentation of our results.

2 Stationary Matrix Splitting Iteration Methods

Assume thatA = M−N is a splitting of the coefficient matrixA of the linear system (1.1), withM being nonsin-
gular. Starting from an arbitrary initial vectorx0, a stationary (single-step) matrix splitting iteration method for
solving the linear system (1.1) produces a sequence of approximate solutionsxk+1, k = 0,1,2, . . ., with

xk+1 = M−1(Nxk +b) (2.1)

or
xk+1 = xk +M−1(b−Axk). (2.2)

Note that the iteration schemes (2.1) and (2.2) are mathematically equivalent, but as we will see later they are
numerically different in actual implementations. From (2.1) and (2.2) we see that the error of the approximate
solutionxk+1−x and the associated residualb−Axk+1 satisfy, respectively, the recurrences

xk+1−x = (I −M−1A)(xk−x) = G(xk−x) (2.3)

and

b−Axk+1 = (I −AM−1)(b−Axk) = F(b−Axk), (2.4)

with

G = I −M−1A and F = I −AM−1.

Note that the matricesG andF have the equivalent expressionsG = M−1N andF = NM−1.

In practical situations, the inner linear systems, inducedby the iteration schemes (2.1) and (2.2), with respect to
the coefficient matrixM, cannot be solved exactly. Instead, we will assume that every computed solution of a linear
system with the coefficient matrixM will be given by an approximate solution that can be interpreted as an exact
solution of a linear system with the same right-hand side vector, but with a perturbed coefficient matrixM + ∆M.
Note that under reasonable assumption on the size of the increment∆M, the inverse of the matrixM + ∆M can be
written in the form

(M + ∆M)−1 = (I + ∆H)M−1 = M−1(I + ∆E),

with

∆H = −(M + ∆M)−1∆M and ∆E = −∆M(M + ∆M)−1.

If M−1 in the iteration matricesG andF appearing in (2.3) and (2.4) are straightforwardly replaced by(M+∆M)−1,
then we could obtain the recurrences with the iteration matricesG+ ∆G andF + ∆F, where

∆G = ∆H(G− I) and ∆F = (F − I)∆E.
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Hence, inexact solutions of the inner linear systems with respect to the coefficient matrixM affect the convergence
rate of the corresponding overall iteration scheme. Roughly speaking, a potential delay in the convergence is
determined by the sizes of the increments∆H and∆E. For stationary iteration methods, this phenomenon has been
analyzed by several authors; see, e.g., [28, 21, 20, 15].

The accuracies of the approximate solutions computed by twoequivalent iteration schemes (2.1) and (2.2) can
be estimated by the standard tools of rounding error analysis [20]. The iteration scheme (2.1) has been analyzed
by Higham and Knight in [21], where they discussed the recurrence for the computed approximate solutions ˆxk+1,
k = 0,1,2, . . ., in the form

(M + ∆Mk)x̂k+1 = Nx̂k +b+ ∆sk, (2.5)

with

|∆Mk| ≤ O(u) |M| and |∆sk| ≤ O(u)(|N||x̂k|+ |b|); (2.6)

see also [20, Chapter 17]). The bound on|∆Mk| is valid if the matrixM is triangular, which is the case for the
stationary relaxation iteration methods such as Jacobi, Gauss-Seidel and SOR [18, 31]. These classical matrix
splitting iteration methods can be shown to be forward stable in a componentwise sense and backward stable in
a normwise sense. The inner linear systems with respect to the coefficient matrixM are, in general, not easily
solvable, so they are solved iteratively in practical implementations. As a result, we cannot expect that all these
inner linear systems can be solved in a backward stable way. Instead, we assume that the relative componentwise
backward error associated with ˆxk+1 is bounded by the parameterτ (τ ≤ 1), i.e., we use the stopping criterion based
on the backward error and terminate the inner iteration process once|∆Mk| ≤ τ|M| is satisfied. As a matter of fact,
assumingτ ·cond(M) < 1 seems reasonable and some accuracy could be achieved in computing the approximate
solutions for all inner linear systems.

In the following, we will analyze the maximum attainable accuracy of the computed approximate solutions
caused by the inexact solutions of the inner linear systems with the coefficient matrixM. More specifically, we are
going to show how the level of inexactness given by the toleranceτ affects the maximum attainable accuracy of
the computed approximate solution ˆxk+1 defined by (2.5), together with

|∆Mk| ≤ τ|M|, and |∆sk| ≤ O(u)(|N||x̂k|+ |b|),

while as will be shown later for the scheme (2.2) the maximum attainable accuracy will be proportional to the
roundoff unitu.

Given an initial guess ˆx0, the computed approximate solution ˆxk+1, for k = 0,1,2, . . ., is thus the exact solution
of (2.5), which can be reformulated as

x̂k+1 = Gx̂k +M−1(b+ ∆yk) = Gk+1x̂0 +
k

∑
i=0

GiM−1(b+ ∆yk−i), (2.7)

where

∆yk−i = ∆sk−i −∆Mk−i x̂k−i+1, i = 0,1, . . . ,k. (2.8)

For the residual vectors corresponding to the solution ˆxk+1, by making use of the identities

AG= AM−1N = NM−1A = FA and I −AM−1 = NM−1 = F

we can derive the recurrence in the form

b−Ax̂k+1 = F(b−Ax̂k)− (I −F)∆yk = Fk+1(b−Ax̂0)+
k

∑
i=0

F i(I −F)∆yk−i . (2.9)

Using the identities

x = Gx+M−1b = Gk+1x+
k

∑
i=0

GiM−1b,
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together with (2.7), we then obtain the formula for the errorx̂k+1− x of the(k+ 1)-th approximate solution ˆxk+1

computed by the scheme (2.1) as follows:

x̂k+1−x = Gk+1(x̂0−x)+
k

∑
i=0

GiM−1 ∆yk−i .

Therefore, the componentwise bound for the error ˆxk+1−x is given by

|x̂k+1−x| ≤ |Gk+1(x̂0−x)|+
k

∑
i=0

∣

∣Gi
∣

∣ |M−1| max
0≤i≤k

|∆yi |. (2.10)

Analogously, using (2.9) we can obtain the componentwise bound for the corresponding residualb−Ax̂k+1 as
follows:

|b−Ax̂k+1| ≤ |Fk+1(b−Ax̂0)|+
k

∑
i=0

|F i ||I −F| max
0≤i≤k

|∆yi |. (2.11)

If the spectral radius of the iteration matrixG is less than 1, i.e.,ρ(G) < 1, then the term|Gk+1(x̂0−x)| converges
to the zero vector and, hence, for a largek the bound for the maximum attainable accuracy of the computed
approximate solution (measured in terms of its error) is given by the supremum of the second term in (2.10).
Equivalently, if ρ(G) < 1, thenρ(F) < 1 and the term|Fk+1(b−Ax̂0)| converges to the zero vector, too. As
a result, for a largek the bound for the maximum attainable accuracy of the computed approximate solution
(measured in terms of the residual) is given by the supremum of the second term in (2.11). Indeed, then the series
∞

∑
i=0

Gi and
∞

∑
i=0

F i converge and, with

|∆Mi | ≤ τ|M|

and

|∆yi | ≤ |∆Mi ||x̂i+1|+ |∆si| ≤ τ|M||x̂i+1|+O(u)(|N||x̂i|+ |b|),

corresponding to the recurrence (2.5) we obtain the bounds

|x̂k+1−x| /
(

∞

∑
i=0

∣

∣Gi
∣

∣

)

(

[

τ|M−1||M|+O(u) |M−1||N|
]

max
0≤i≤k+1

|x̂i |+O(u) |M−1||b|
)

(2.12)

and

|b−Ax̂k+1| /
(

∞

∑
i=0

∣

∣F i
∣

∣

)

|I −F|
(

[τ|M|+O(u) |N|] max
0≤i≤k+1

|x̂i |+O(u) |b|
)

. (2.13)

Usingτ ≫ O(u) and

|b| = |Ax| ≤ |A||x| ≤ (|M|+ |N|)|x|,

we can rewrite (2.12) and (2.13) into

|x̂k+1−x| / τ

(

∞

∑
i=0

|Gi |
)

|M−1|(|M|+ |N|)
(

max
0≤i≤k+1

|x̂i |+ |x|
)

(2.14)

and

|b−Ax̂k+1| / τ

(

∞

∑
i=0

|F i |
)

|I −F|
(

(|M|+ |N|) max
0≤i≤k+1

|x̂i |+ |b|
)

. (2.15)
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Provided that the entries of
∞

∑
i=0

∣

∣Gi
∣

∣ or
∞

∑
i=0

∣

∣F i
∣

∣ are not too large, in the case of backward stable solutions ofall

inner linear systems withτ = O(u), the estimates in (2.14) and (2.15) guarantee small forwardand backward errors
in the componentwise sense, respectively. These bounds contain the factor max

0≤i≤k+1
|x̂i | that can be also significant

depending on the convergence behavior of our stationary iteration method. Provided that this factor is not too
large, i.e., max

0≤i≤k+1
|x̂i | ≈ |x|, the componentwise forward or backward stability are then ensured if|M−1| ≈ |A−1|

and|M|+ |N| ≈ |A|. However, in practice we haveτ ≫ O(u) and, therefore, the maximum attainable accuracy in
general does depend on the parameterτ.

The normwise approach is similar. The componentwise boundsin (2.6) can be replaced by the normwise ones

‖∆Mk‖ ≤ τ‖M‖ and ‖∆sk‖ ≤ O(u)(‖N‖‖x̂k‖+‖b‖).

So from (2.8) we can correspondingly obtain the estimate

‖∆yi‖ ≤ ‖∆Mi‖‖x̂i+1‖+‖∆si‖ ≤ τ‖M‖‖x̂i+1‖+O(u)(‖N‖‖x̂i‖+‖b‖). (2.16)

Now, analogously to (2.10) and (2.11) we have the normwise bounds

‖x̂k+1−x‖ ≤ ‖Gk+1(x̂0−x)‖+
k

∑
i=0

‖Gi‖‖M−1‖ max
0≤i≤k

‖∆yi‖ (2.17)

and

‖b−Ax̂k+1‖ ≤ ‖Fk+1(b−Ax̂0)‖+
k

∑
i=0

‖F i‖‖I −F‖ max
0≤i≤k

‖∆yi‖. (2.18)

Provided that‖G‖ < 1 and‖F‖ < 1, it holds that

∥

∥

∥

∥

∥

k

∑
i=0

Gi

∥

∥

∥

∥

∥

≤
k

∑
i=0

‖Gi‖ ≤
k

∑
i=0

‖G‖i ≤ 1
1−‖G‖

and
∥

∥

∥

∥

∥

k

∑
i=0

F i

∥

∥

∥

∥

∥

≤
k

∑
i=0

‖F i‖ ≤
k

∑
i=0

‖F‖i ≤ 1
1−‖F‖ .

Similarly to [20] we define the normwise growth factor

θk+1 = sup
0≤i≤k+1

{‖x̂i‖
‖x‖

}

,

so that

‖x̂i‖ ≤ θk+1‖x‖, i = 0,1, . . . ,k+1.

By making use of (2.16) and

‖b‖ ≤ (‖M‖+‖N‖)‖x‖, (2.19)

we have fori = 0,1, . . . ,k that

‖∆yi‖ ≤ θk+1(τ‖M‖+O(u)‖N‖)‖x‖+O(u)‖b‖
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and

‖∆yi‖ ≤ θk+1(τ‖M‖+O(u)‖N‖)‖x‖+O(u)(‖M‖+‖N‖)‖x‖
≤ (1+ θk+1)(τ‖M‖+O(u)‖N‖)‖x‖,

where we have used the factτ ≫ O(u). From (2.17) and (2.18) we then have

‖x̂k+1−x‖ ≤ ‖Gk+1(x̂0−x)‖+
1+ θk+1

1−‖G‖
[

τ κ(M)+O(u)‖M−1‖‖N‖
]

‖x‖ (2.20)

and

‖b−Ax̂k+1‖ ≤ ‖Fk+1(b−Ax̂0)‖+
‖I −F‖
1−‖F‖ [θk+1(τ‖M‖+ O(u)‖N‖)‖x‖+O(u)‖b‖]. (2.21)

Here in the derivation of (2.20) we have also applied the estimate (2.19).

In practical situations, whenτ ≫ O(u), the relative error of the computed approximate solution will be propor-
tional to the parameterτ. Provided that‖G‖ and‖F‖ are not too close to 1, andθk+1 is not too large, neglecting
the terms withO(u) in (2.20) and (2.21) we see that the normwise relative error and the normwise residual will
approximately satisfy

‖x̂k+1−x‖
‖x‖ / τ

1+ θk+1

1−‖G‖ κ(M) and ‖b−Ax̂k+1‖ / τ
θk+1‖I −F‖

1−‖F‖ ‖M‖‖x‖,

respectively. In the case of backward stable solutions of all inner linear systems withτ = O(u), the bounds (2.20)
and (2.21) reduce to the error bound (17.11) and the residualbound (17.19) in [20]. This guarantees a small
normwise forward error ifκ(M) ≈ κ(A) and a small normwise backward error if‖M‖ ≈ ‖A‖ under the above-
mentioned conditions.

As also noted in [22], if greater computing accuracy is required, we are better to work with the recurrence
(2.2). This iteration scheme is similar to the iterative refinement, which is a popular technique for improving the
computing accuracy of linear solvers; see [18]. We will showthat under mild conditions this iteration scheme will
deliver approximate solution with the accuracy being proportional to the roundoff unitu, but independent of the
parameterτ. This indicates a significant difference from the iterationscheme (2.1).

Given an initial guess ˆx0, at the(k+1)-th step of the iteration scheme (2.2), we first compute the residual of the
previously computed approximate solution ˆxk as follows:

r̂k = b−Ax̂k + ∆rk, with |∆rk| ≤ O(u)(|b|+ |A||x̂k|). (2.22)

Then we solve approximately the correction equation with the matrixM so that the computed correction vector ˆzk

satisfies

(M + ∆Mk)ẑk = r̂k, with |∆Mk| ≤ τ|M|, (2.23)

where the stopping criterion in the inner iteration is againassumed to be based on the backward error smaller than
the parameterτ. We finally obtain the approximate solution ˆxk+1 that satisfies

x̂k+1 = x̂k + ẑk + ∆xk, with |∆xk| ≤ u(|x̂k|+ |ẑk|). (2.24)

This computing procedure is well defined if the matrixM + ∆Mk is nonsingular, which is guaranteed under rel-
atively mild conditions on the accuracy in the inner iterations (measured by the parameterτ), e.g.,σmin(M) >
‖∆Mk‖, k= 0,1, . . ., whereσmin(M) represents the smallest singular value of the matrixM. By using (2.24) we can
derive the following recurrences for the error ˆxk+1− x and the residualb−Ax̂k+1 corresponding to the computed
approximate solution ˆxk+1:

x̂k+1−x =
[

I − (M + ∆Mk)
−1A

]

(x̂k−x)+ (M + ∆Mk)
−1 ∆rk + ∆xk, (2.25)

b−Ax̂k+1 =
[

I −A(M + ∆Mk)
−1](b−Ax̂k)−A(M + ∆Mk)

−1 ∆rk−A∆xk. (2.26)
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We now derive componentwise bounds for the error ˆxk+1−x and the residualb−Ax̂k+1 based on the identities
(2.25) and (2.26). To this end, from the definition of the update ẑk we have

ẑk = (M + ∆Mk)
−1 [(b−Ax̂k)+ ∆rk]

= (M + ∆Mk)
−1 [A(x− x̂k)+ ∆rk] . (2.27)

Therefore,

|ẑk| ≤ |(M + ∆Mk)
−1| [|b−Ax̂k|+ |∆rk|]

≤ |(M + ∆Mk)
−1| [|b−Ax̂k|+O(u)(|b|+ |A||x̂k|)] (2.28)

and

|ẑk| ≤ |(M + ∆Mk)
−1| [|A||x− x̂k|+ |∆rk|]

≤ (1+O(u)) |(M + ∆Mk)
−1||A|(|x|+ |x̂k|). (2.29)

It follows straightforwardly from these estimates, the bounds (2.22) and (2.24), as well as the identities (2.25) and
(2.26) that

|x̂k+1−x| ≤ |I − (M + ∆Mk)
−1A||x̂k−x|+O(u) |(M+ ∆Mk)

−1||A|(|x|+ |x̂k|)+u|x̂k| (2.30)

and

|b−Ax̂k+1| ≤
[

|I −A(M + ∆Mk)
−1|+u|(M + ∆Mk)

−1||A|
]

|b−Ax̂k|
+O(u) |A(M + ∆Mk)

−1|(|b|+ |A||x̂k|)+u|A||x̂k|. (2.31)

If ρ(τ|M−1||M|) < 1, then from|∆Mk| ≤ τ|M| we have

|(M + ∆Mk)
−1| ≤

∞

∑
i=0

(

τ|M−1||M|
)i |M−1| =

(

I − τ|M−1||M|
)−1 |M−1|

and

|A(M + ∆Mk)
−1| ≤ |I −F|

∞

∑
i=0

(

τ|M−1||M|
)i

= |I −F|
(

I − τ|M−1||M|
)−1

.

Moreover, we claim that there exist matrices∆G and∆F such that

|I − (M + ∆Mk)
−1A| ≤ |G+ ∆G|

and

|I −A(M + ∆Mk)
−1|+u|(M + ∆Mk)

−1||A| ≤ |F + ∆F|.

Indeed, such matrices∆G and∆F do exist and they can be bounded as

|∆G| ≤ τ
∞

∑
i=0

(τ|M−1||M|)i |M−1||M||M−1A|

= τ|M−1||M||M−1A|
(

I − τ|M−1||M|
)−1

and

|∆F | ≤
(

τ|AM−1||M|+u|A|
)

|M−1|
∞

∑
i=0

(τ|M−1||M|)i

=
(

τ|AM−1||M|+u|A|
)

|M−1|
(

I − τ|M−1||M|
)−1

.
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As a result, we can obtain the following bounds for|x̂k+1−x| and|b−Ax̂k+1|:

|x̂k+1−x| ≤ |G+ ∆G||x̂k−x|+O(u)
(

I − τ|M−1||M|
)−1 |M−1||A|(|x|+ |x̂k|)+u|x̂k|

≤ |G+ ∆G|k+1|x̂0−x|+
k

∑
i=0

|G+ ∆G|i

·
[

O(u)
(

I − τ|M−1||M|
)−1 |M−1||A|

(

|x|+ max
0≤i≤k

|x̂i |
)

+u max
0≤i≤k

|x̂i |
]

(2.32)

and

|b−Ax̂k+1| ≤ |F + ∆F||b−Ax̂k|+O(u) |I −F|
(

I − τ|M−1||M|
)−1

(|b|+ |A||x̂k|)+u|A||x̂k|

≤ |F + ∆F|k+1|b−Ax̂0|+
k

∑
i=0

|F + ∆F|i

·
[

O(u) |I −F|
(

I − τ|M−1||M|
)−1
(

|b|+ |A| max
0≤i≤k

|x̂i |
)

+u|A| max
0≤i≤k

|x̂i |
]

. (2.33)

Provided that the spectral radiiρ(|G+∆G|) andρ(|F +∆F|) are less than 1, the first terms in (2.32) and (2.33)
will be small after sufficiently large number of iteration steps. Then the error ˆxk+1−x and the residualb−Ax̂k+1

will be proportional to the roundoff unitu as

|x̂k+1−x|/
k

∑
i=0

|G+ ∆G|i
[

O(u)
(

I − τ|M−1||M|
)−1 |M−1||A|

(

|x|+ max
0≤i≤k

|x̂i |
)

+u max
0≤i≤k

|x̂i |
]

and

|b−Ax̂k+1| /
k

∑
i=0

|F + ∆F|i
[

O(u) |I −F|
(

I − τ|M−1||M|
)−1
(

|b|+ |A| max
0≤i≤k

|x̂i |
)

+u|A| max
0≤i≤k

|x̂i |
]

.

These bounds are significantly better than the bounds we haveobtained for the recurrence (2.1). Although in prac-
tical situations it isτ ≫ O(u) that is used in the iteration scheme (2.2), we will obtain very accurate approximate
solutions after sufficiently many iterations.

For the normwise approach, now the componentwise bounds in (2.22), (2.23) and (2.24) are, respectively,
replaced by the normwise ones

r̂k = b−Ax̂k + ∆rk, with ‖∆rk‖ ≤ O(u)(‖b‖+‖A‖‖x̂k‖),

(M + ∆Mk)ẑk = r̂k, with ‖∆Mk‖ ≤ τ‖M‖

and

x̂k+1 = x̂k + ẑk + ∆xk, with ‖∆xk‖ ≤ u(‖x̂k‖+‖ẑk‖).

Based on the identities (2.25) and (2.26), using an analogous approach we can derive the normwise bounds

‖x̂k+1−x‖
‖x‖ / O(u)

1+ θk

1−‖G‖− τ κ(M)(1−‖G‖+‖I−G‖)
(

‖M−1‖‖A‖+1− τ κ(M)
)

and

‖b−Ax̂k+1‖ / O(u)
‖I −F‖

1−‖F‖− τ κ(M)(1−‖F‖+‖I −F‖)−u‖M−1‖‖A‖

·
[

‖b‖+ θk‖A‖‖x‖
(

1+
1− τ κ(M)

‖I −F‖

)]
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for the error ˆxk+1−x and the residualb−Ax̂k+1, respectively, under the assumptions

‖G+ ∆G‖ ≤ ‖G‖+ τ κ(M)(1− τ κ(M))−1‖I −G‖ < 1 (2.34)

and

‖F + ∆F‖ ≤ ‖F‖+(1− τ κ(M))−1(τ κ(M)‖I −F‖+u‖M−1‖‖A‖
)

< 1. (2.35)

Recall thatθk is the growth factor depending on all preceding computed iterates{x̂i}k
i=0. Again, these bounds

guarantee small normwise forward and backward errors, respectively, under mild conditions as stated in (2.34) and
(2.35).

In summary, if the iteration schemes (2.1) and (2.2) are either componentwise or normwise forward or back-
ward stable, and if the splitting matrixN is as sparse and structured as the coefficient matrixA, then, at thek-th
iteration step of these two schemes, computing the vectorNxk + b should be as costly as computing the residual
b−Axk. So the iteration scheme (2.1) costs about the same workloads as the iteration scheme (2.2) at each iteration
step. Roughly speaking, provided that the inner linear systems having the same coefficient matrixM are solved
inexactly in accuracies controlled by the same toleranceτ, the iteration scheme (2.2) can always achieve higher
computational efficiency than the iteration scheme (2.1).

3 Stationary Two-Step Matrix Splitting Iteration Methods

In this section, we study the numerical behavior of the stationary two-step matrix splitting iteration methods
[27, 16, 3, 4, 12, 14] and give results similar to the stationary matrix splitting iteration methods in Section 2.
The stationary two-step matrix splitting iteration framework has been studied extensively by several authors from
several perspectives, see, e.g., [9, 8, 10, 5, 6] and the references therein. We consider two splittings of the matrix
A in the formA = M1−N1 andA = M2−N2. Given an initial vectorx0, we define the stationary two-step matrix
splitting iteration method by the following two successiverecurrences

M1xk+1/2 = N1xk +b,

M2xk+1 = N2xk+1/2+b.

Alternatively, we can use these recurrences in the most straightforward way as

xk+1/2 = M−1
1 (N1xk +b), (3.1)

xk+1 = M−1
2 (N2xk+1/2+b). (3.2)

Denote byG1 = M−1
1 N1 = I −H1A andG2 = M−1

2 N2 = I −H2A, with H1 = M−1
1 andH2 = M−1

2 . Then (3.1) and
(3.2) can be rewritten as

xk+1/2 = G1xk +H1b

and

xk+1 = G2xk+1/2 +H2b.

These give rise to the alternative recurrences

xk+1/2 = xk +H1(b−Axk), (3.3)

xk+1 = xk+1/2+H2(b−Axk+1/2). (3.4)

At each iteration step, the recurrences (3.3) and (3.4) involve the computations of two residualsb−Axk and
b−Axk+1/2, which require two matrix-vector multiplications with respect to the matrixA. According to Lemma 2.1
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in [9], this can be avoided, however, by the substitution ofxk+1/2 in (3.3) intoxk+1 in (3.4), leading to

xk+1 = xk +H1(b−Axk)+H2 [b−A(xk +H1(b−Axk))]

= (I −H2A)(I −H1A)xk +[(I −H2A)H1 +H2]b

= G2G1xk +(G2H1 +H2)b

= Gxk +Hb,

where

G = G2G1 and H = G2H1 +H2. (3.5)

We remark that the matrixH admits the following equivalent expressions

H = H1 +H2G1 = H1 +H2−H2AH1 = H2(M1 +M2−A)H1, (3.6)

and the matricesG andH satisfy the identityG = I −HA. Thus, instead of (3.3) and (3.4) we can use only one
single recurrence

xk+1 = xk +H(b−Axk). (3.7)

The detailed convergence analysis about the alternating splitting iteration method can be found in [14, 3, 4] and
the references therein.

In practical situations, the inner linear systems, inducedby the iteration schemes (3.1) and (3.2) with respect to
the coefficient matricesM1 andM2, cannot be solved exactly, and they are often solved inexactly by some other
iteration schemes; see [9, 11] and the references therein. It follows that inexact solutions of the inner linear systems
with respect to the coefficient matricesM1 andM2 affect the convergence rate of the corresponding overall iteration
scheme.

In the following, we estimate the maximum attainable accuracy for approximate solution, computed with (3.1)
and (3.2), to the linear system (1.1). Using the same approach as for the stationary matrix splitting iteration method
defined by (2.1) in Section 2, we can write

x̂k+1/2 = M−1
1 (N1x̂k +b+ ∆sk+1/2), (3.8)

x̂k+1 = M−1
2 (N2x̂k+1/2 +b+ ∆sk+1), (3.9)

where

|∆sk+1/2| ≤ τ1|M1||x̂k+1/2|+O(u)(|N1||x̂k|+ |b|),
|∆sk+1| ≤ τ2|M2||x̂k+1|+O(u)(|N2||x̂k+1/2|+ |b|).

Again, τ1 andτ2 are the tolerances employed to describe the accuracies in solving the inner linear systems with
respect to the matricesM1 and M2, respectively. Substituting ˆxk+1/2 into the formula of ˆxk+1, we obtain the
expression

x̂k+1 = Gx̂k +Hb+ ∆yk, (3.10)

with

∆yk = G2M−1
1 ∆sk+1/2 +M−1

2 ∆sk+1.

Denote byF1 = N1M−1
1 andF2 = N2M−1

2 . Then it follows from direct manipulation that

A∆yk = F2(I −F1)∆sk+1/2 +(I −F2)∆sk+1,

where we have used the commutative property of the matricesA andM−1
2 N2, i.e.,AM−1

2 N2 = M−1
2 N2A.
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From the bounding conditions on∆sk+1/2 and∆sk+1 we have the estimates

|∆sk+1/2| ≤ τ1|M1||x̂k+1/2|+O(u)(|N1||x̂k|+ |b|)
≤ (τ1|M1|+O(u) |N1|) max

i=k,k+1/2
|x̂i |+O(u)|b|

and

|∆sk+1/2| ≤ (τ1|M1|+O(u) |N1|) max
i=k,k+1/2

|x̂i |+O(u)(|M1|+ |N1|)|x|

≤ (τ1|M1|+O(u) |N1|)
(

max
i=k,k+1/2

|x̂i |+ |x|
)

,

as well as

|∆sk+1| ≤ τ2|M2||x̂k+1|+O(u)(|N2||x̂k+1/2|+ |b|)
≤ (τ2|M2|+O(u) |N2|) max

i=k+1/2,k+1
|x̂i |+O(u) |b|

and

|∆sk+1| ≤ (τ2|M2|+O(u) |N2|) max
i=k+1/2,k+1

|x̂i |+O(u)(|M2|+ |N2|)|x|

≤ (τ2|M2|+O(u) |N2|)
(

max
i=k+1/2,k+1

|x̂i |+ |x|
)

.

Here in the estimates of|∆sk+1/2| and |∆sk+1| we have used the factsτ1 ≫ O(u), τ2 ≫ O(u), and applied the
bounds

|b| = |(M1−N1)x| ≤ (|M1|+ |N1|)|x|,
|b| = |(M2−N2)x| ≤ (|M2|+ |N2|)|x|.

Therefore, according to the formulas of∆yk andA∆yk, it holds that

|∆yk| ≤ |G2M−1
1 ||∆sk+1/2|+ |M−1

2 ||∆sk+1|

≤ |G2M−1
1 |(τ1|M1|+O(u) |N1|)

(

max
i=k,k+1/2

|x̂i |+ |x|
)

+|M−1
2 |(τ2|M2|+O(u) |N2|)

(

max
i=k+1/2,k+1

|x̂i |+ |x|
)

≤
[

|G2M−1
1 |(τ1|M1|+O(u) |N1|)+ |M−1

2 |(τ2|M2|+O(u) |N2|)
]

·
(

max
i=k,k+1/2,k+1

|x̂i |+ |x|
)

(3.11)

and

|A∆yk| ≤ |F2(I −F1)||∆sk+1/2|+ |I −F2||∆sk+1|

≤ |F2(I −F1)|
[

(τ1|M1|+O(u) |N1|) max
i=k,k+1/2

|x̂i |+ |b|
]

+|I −F2|
[

(τ2|M2|+O(u) |N2|) max
i=k+1/2,k+1

|x̂i |+ |b|
]

. (3.12)

Because (3.10) immediately implies

x̂k+1 = Gk+1x̂0 +
k

∑
i=0

Gi(Hb+ ∆yk−i),
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by making use of the identity

x = Gk+1x+
k

∑
i=0

GiHb

and the relationshipAG= FA, with F = I −AH = F2F1, we can obtain the recurrences

x̂k+1−x = Gk+1(x̂0−x)+
k

∑
i=0

Gi ∆yk−i (3.13)

and

b−Ax̂k+1 = Fk+1(b−Ax̂0)+
k

∑
i=0

F iA∆yk−i (3.14)

for the error ˆxk+1−x and the residualb−Ax̂k+1. It then follows straightforwardly that

|x̂k+1−x| ≤ |Gk+1||x̂0−x|+
k

∑
i=0

|Gi ||∆yk−i |, (3.15)

|b−Ax̂k+1| ≤ |Fk+1||b−Ax̂0|+
k

∑
i=0

|F i ||A∆yk−i|. (3.16)

If ρ(G) < 1, thenρ(F) < 1. Hence, the terms|Gk+1||x̂0− x| and|Fk+1||b−Ax̂0| converge to the zero vector.
As a result, for a largek the bounds for the maximum attainable accuracies of the computed approximate solutions
(measured in terms of both error and residual) are given by the supremums of the second terms in (3.15) and (3.16),
respectively. Indeed, corresponding to the recurrence (3.8), after substitutions of (3.11) and (3.12) into (3.15) and
(3.16), respectively, we obtain the bounds

|x̂k+1−x| /
k

∑
i=0

|Gi |
[

|G2M−1
1 |(τ1|M1|+O(u) |N1|)+ |M−1

2 |(τ2|M2|+O(u) |N2|)
]

·
(

max
1≤i≤2k+3

|x̂(i−1)/2|+ |x|
)

and

|b−Ax̂k+1| /
k

∑
i=0

|F i |
[

|F2(I −F1)|
(

(τ1|M1|+O(u) |N1|) max
1≤i≤2k+3

|x̂(i−1)/2|+ |b|
)

+ |I −F2|
(

(τ2|M2|+O(u) |N2|) max
1≤i≤2k+3

|x̂(i−1)/2|+ |b|
)]

.

Provided that the entries of the vector max
1≤i≤2k+3

|x̂(i−1)/2| and the entries in the matrix
k

∑
i=0

∣

∣Gi
∣

∣ or
k

∑
i=0

∣

∣F i
∣

∣ are not

too large, in the case of backward stable solutions of all inner linear systems withτ1 = O(u) andτ2 = O(u), these
estimates then guarantee small forward and backward errorsin the componentwise sense, respectively, if|M−1

1 | ≈
|M−1

2 | ≈ |A−1| and |M1|+ |N1| ≈ |M2|+ |N2| ≈ |A|. However, in practice we haveτ1 ≫ O(u) andτ2 ≫ O(u).
Therefore, the maximum attainable accuracies in general dodepend on the parametersτ1 andτ2.

The normwise approach can be conducted in a similar fashion.In fact, by introducing the normwise growth
factor

θk+1 = sup
1≤i≤2k+3

‖x̂(i−1)/2‖
‖x‖
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so that

‖x̂(i−1)/2‖ ≤ θk+1‖x‖, i = 0,1, . . . ,2k+3,

if ‖F‖< 1 and‖G‖< 1 we can correspondingly obtain the normwise bounds for the error x̂k+1−x and the residual
b−Ax̂k+1 as follows:

‖x̂k+1−x‖
‖x‖ /

1+ θk+1

1−‖G‖ [(τ1‖G2‖κ(M1)+ τ2κ(M2))

+O(u) (‖G2‖‖M−1
1 ‖‖N1‖+‖M−1

2 ‖‖N2‖)
]

,

‖b−Ax̂k+1‖ /
θk+1

1−‖F‖ [(τ1‖F2(I −F1)‖‖M1‖+ τ2‖I −F2‖‖M2‖)

+O(u) (‖F2(I −F1)‖‖N1‖+‖I −F2‖‖N2‖)]‖x‖

+
‖b‖

1−‖F‖(‖F2(I −F1)‖+‖I −F2‖).

Provided thatτ1 ≫ O(u) andτ2 ≫ O(u), these bounds can be approximately reduced to

‖x̂k+1−x‖
‖x‖ /

1+ θk+1

1−‖G‖ (τ1‖G2‖κ(M1)+ τ2κ(M2)),

‖b−Ax̂k+1‖ /
θk+1

1−‖F‖(τ1‖F2(I −F1)‖‖M1‖+ τ2‖I −F2‖‖M2‖)‖x‖

+
‖b‖

1−‖F‖ (‖F2(I −F1)‖+‖I −F2‖).

Roughly speaking, the limiting accuracy level measured in terms of the error is given by the quantityτ1‖G2‖κ(M1)+
τ2 κ(M2), so theτ1-term is damped by the quantity‖G2‖. In actual implementations, we should balance the choices
of the tolerancesτ1 andτ2 in such a way that a desired overall accuracy of the error is achieved. For example, we
may setτ1 = τ

‖G2‖ andτ2 = τ, whereτ is a prescribed tolerance. Consequently, it holds that

‖x̂k+1−x‖
‖x‖ /

1+ θk+1

1−‖G‖ τ(κ(M1)+ κ(M2)).

The quantityτ1‖F2(I − F1)‖‖M1‖+ τ2‖I − F2‖‖M2‖ plays an analogous role in the result for the norm of the
residual, and the tolerancesτ1 andτ2 should be chosen in a similar fashion to the above, e.g., through a prescribed
common toleranceτ. Definitely, the maximum attainable accuracies depend on the levels of inexactness (measured
in terms ofτ) in solving the inner linear systems either with the matrixM1 or with the matrixM2.

In some applications one needs the maximum attainable accuracy to be proportional to the machine precision
u. Hence, it makes sense that we discuss the recurrence (3.7) by straightforwardly applying the theory for the
recurrence (2.2) established in Section 2. In this manner, we can derive the componentwise and the normwise
bounds for the error ˆxk+1−x and the residualb−Ax̂k+1 of the computed solution ˆxk+1 of the linear system (1.1).

To this end, we recall that the matrixH, defined in (3.5) and reformulated in (3.6), adopts the equivalent
expression

H = M−1
2 (M1 +M2−A)M−1

1 .

Similar to the computing model described in (2.22), (2.23) and (2.24), at the(k+1)-th step of the iteration scheme
(3.7) we assume that the computed solution ˆxk+1 is obtained by the procedure

r̂k = b−Ax̂k+ ∆rk, ẑk = (H + ∆H(k))r̂k and x̂k+1 = x̂k + ẑk + ∆xk,

with x̂0 a given initial guess, where

|∆rk| ≤ O(u)(|b|+ |A||x̂k|), |∆xk| ≤ u(|x̂k|+ |ẑk|), (3.17)
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and∆H(k) is a perturbation to the matrixH, which is defined implicitly by

H + ∆H(k) = (M2 + ∆M(k)
2 )−1(M1 +M2−A+ ∆M(k))(M1 + ∆M(k)

1 )−1,

with ∆M(k)
1 , ∆M(k)

2 and∆M(k) being imposed to satisfy

|∆M(k)
1 | ≤ τ1|M1|, |∆M(k)

2 | ≤ τ2|M2| and |∆M(k)| ≤ O(u)(|M1|+ |M2|+ |A|). (3.18)

Again,τ1 andτ2 are two prescribed tolerances used to measure the accuracies in solving the inner linear systems
with respect to the matricesM1 andM2, respectively.

Again, we omit the superscripts of the perturbation matrices such as∆H(k), ∆M(k) and∆M(k)
1 , ∆M(k)

2 , which are
used to label the iterate indices. Moreover, there exist matrices∆G and∆F, independent of the iterate indexk,
such that

|I − (H + ∆H)A| ≤ |G+ ∆G| and |I −A(H + ∆H)|+u|H + ∆H||A| ≤ |F + ∆F|.

Provided that the spectral radiiρ(|G+ ∆G|) andρ(|F + ∆F|) are strictly less than 1, the maximum attainable
accuracies will be proportional to the roundoff unitu and also independent of the parametersτ1 andτ2 as

|x̂k+1−x|/
k

∑
i=0

|G+ ∆G|i
[

O(u) |H + ∆H||A|
(

|x|+ max
0≤i≤k

|x̂k|
)

+u max
0≤i≤k

|x̂k|
]

and

|b−Ax̂k+1| /
k

∑
i=0

|F + ∆F|i
[

O(u) |A(H + ∆H)|
(

|b|+ |A| max
0≤i≤k

|x̂k|
)

+u|A| max
0≤i≤k

|x̂k|
]

.

As

|H + ∆H| ≤ |I −G−∆G||A−1| and |A(H + ∆H)| ≤ |I −F −∆F|,

we can further obtain the bounds

|x̂k+1−x| /
k

∑
i=0

|G+ ∆G|i
[

O(u) |I −G−∆G||A−1||A|
(

|x|+ max
0≤i≤k

|x̂k|
)

+u max
0≤i≤k

|x̂k|
]

and

|b−Ax̂k+1| /
k

∑
i=0

|F + ∆F|i
[

O(u) |I −F −∆F|
(

|b|+ |A| max
0≤i≤k

|x̂k|
)

+u|A| max
0≤i≤k

|x̂k|
]

.

These bounds are significantly better than the bounds we haveobtained for the recurrence defined in (3.1) and
(3.2). Although in practical situations it isτ1 ≫ O(u) andτ2 ≫ O(u) that are used in the iteration scheme (3.7),
we will obtain very accurate approximate solutions after sufficiently many iterations.

For the normwise approach, replacing the componentwise bounds in (3.17) and (3.18) by the normwise ones

‖∆rk‖ ≤ O(u)(‖b‖+‖A‖‖x̂k‖), ‖∆xk‖ ≤ u(‖x̂k‖+‖ẑk‖)

and

‖∆M1‖ ≤ τ1‖M1‖, ‖∆M2‖ ≤ τ2‖M2‖, ‖∆M‖ ≤ O(u)(‖M1‖+‖M2‖+‖A‖),

respectively, we can analogously obtain the normwise bounds for the error ˆxk+1−x and the residualb−Ax̂k+1 as
follows:

‖x̂k+1−x‖ /
k

∑
i=0

‖G+ ∆G‖i
[

O(u)‖I − (G+ ∆G)‖κ(A)

(

‖x‖+ max
0≤i≤k

‖x̂k‖
)

+u max
0≤i≤k

‖x̂k‖
]
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and

‖b−Ax̂k+1‖ /
k

∑
i=0

‖F + ∆F‖i
[

O(u)‖I − (F + ∆F)‖
(

‖b‖+‖A‖ max
0≤i≤k

‖x̂k‖
)

+u‖A‖ max
0≤i≤k

‖x̂k‖
]

.

Provided that‖G+ ∆G‖< 1 and‖F + ∆F‖ < 1, and assuming that the normwise growth factor

θk = sup
0≤i≤k

{‖x̂i‖
‖x‖

}

is not too large, the above normwise bounds can be further simplified to

‖x̂k+1−x‖
‖x‖ / O(u)

1+ θk

1−‖G+ ∆G‖

(

‖I − (G+ ∆G)‖κ(A)+
θk

1+ θk

)

and

‖b−Ax̂k+1‖ / O(u)
‖I − (F + ∆F)‖
1−‖F + ∆F‖

[

‖b‖+

(

1+
1

‖I − (F + ∆F)‖

)

θk‖A‖‖x‖
]

.

Consequently, these bounds guarantee small normwise forward and backward errors, respectively, under mild
conditions on the coefficient matrixA as well as the splitting matricesM1, N1 andM2, N2.

In summary, if the iteration schemes (3.1)-(3.2) and (3.3)-(3.4) are either componentwise or normwise forward
or backward stable, and if the splitting matricesN1 andN2 are as sparse and structured as the coefficient matrixA,
then at thek-th iteration step of these two schemes computing the vectorsN1xk +b andN2xk+1/2 +b should be as
costly as computing the residualsb−Axk andb−Axk+1/2, respectively. So the iteration scheme (3.1)-(3.2) costs
about the same workloads as the iteration scheme (3.3)-(3.4) at each iteration step. Roughly speaking, provided
that the inner linear systems having the same coefficient matricesM1 andM2 are solved inexactly in accuracies
controlled by the same tolerancesτ1 andτ2, respectively, the iteration scheme (3.3)-(3.4) can always achieve higher
computational efficiency than the iteration scheme (3.1)-(3.2).

4 Description of Implementations

In this section, we review the PMHSS and the HSS iteration methods [9, 7] and clarify their implementation
settings. We remark that PMHSS and HSS are, respectively, the typical examples of the stationary single- and
two-step matrix splitting iteration methods for solving the large sparse linear system (1.1); see also [12, 11, 6]
and the references therein. Besides, we describe two experimental examples where a complex symmetric and a
non-symmetric positive-definite linear systems arise.

The PMHSS iteration method is used to solve the linear system(1.1), with its coefficient matrixA∈ C
n,n being

complex symmetric and given byA = W + iT, whereW,T ∈ R
n,n are real, symmetric, and positive semidefinite

matrices with, at least, one of them being positive definite.Here and in the sequel, we use i=
√
−1 to denote the

imaginary unit. A specific form of this iteration method is given by setting the iteration parameterα to be 1 and
choosing the preconditioning matrix to beW, which has the following algorithmic description.

Method 4.1. (The PMHSS Iteration Method [7])
Let x0 ∈C

n be an arbitrary initial guess. For k= 0,1,2, . . . until the sequence of iterates

{xk}∞
k=0⊂C

n converges, compute the next iterate xk+1 according to the following procedure:

(W+T)xk+1 =
1+ i

2
(W− i T)xk +

1− i
2

b.
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The PMHSS iteration scheme is induced by the matrix splitting A = M−N, with

M = (1+ i)(W+T) and N = i(W− i T).

It alternatively admits the following equivalent form in terms of the residual.

Method 4.2. (The PMHSS Iteration Method [7])
Let x0 ∈C

n be an arbitrary initial guess. For k= 0,1,2, . . . until the sequence of iterates

{xk}∞
k=0⊂C

n converges, compute the next iterate xk+1 according to the following procedure:

xk+1 = xk +
1− i

2
(W+T)−1(b−Axk).

In fact, the PMHSS iteration method is a stationary single-step matrix splitting iteration method. It con-
verges unconditionally to the unique solution of the complex symmetric linear system (1.1) for any initial guess if
null(W)∩null(T) = {0}. For distinction, we call Methods 4.1 and 4.2, respectively, the PMHSS iteration schemes
I and II, or shortly, PMHSS-I and PMHSS-II, in the subsequentdiscussion.

In actual computations, we solve the linear sub-systems with respect to the coefficient matrixW + T itera-
tively by thepreconditioned conjugate gradient(PCG) method, with the incomplete Cholesky factorization [18]
preconditioner (MATLAB codeichol(sparse(·))).

The HSS iteration method is used to solve the linear system (1.1) with its coefficient matrixA ∈ C
n,n being

non-Hermitian and positive definite, i.e., its Hermitian part H (A) = 1
2(A+A∗) is positive definite; see [9]. Denote

by S (A) = 1
2(A−A∗) the skew-Hermitian part of the matrixA. Then it holds thatA = H (A)+S (A), and the

HSS iteration method can be algorithmically described as follows.

Method 4.3. (The HSS Iteration Method [9])
Let x0 ∈C

n be an arbitrary initial guess. For k= 0,1,2, . . . until the sequence of iterates

{xk}∞
k=0⊂C

n converges, compute the next iterate xk+1 according to the following procedure:

{

(αI +H (A))xk+1/2 = (αI −S (A))xk +b,
(αI +S (A))xk+1 = (αI −H (A))xk+1/2 +b,

where α is a given positive constant.

The HSS iteration scheme is induced by the matrix splittingA = M(α)−N(α), with

M(α) =
1

2α
(αI +H (A))(αI +S (A)) and N(α) =

1
2α

(αI −H (A))(αI −S (A)).

It alternatively admits the following equivalent form in terms of the residual.

Method 4.4. (The HSS Iteration Method [9])
Let x0 ∈C

n be an arbitrary initial guess. For k= 0,1,2, . . . until the sequence of iterates

{xk}∞
k=0⊂C

n converges, compute the next iterate xk+1 according to the following procedure:

{

xk+1/2 = xk +(αI +H (A))−1(b−Axk),
xk+1 = xk+1/2 +(αI +S (A))−1(b−Axk+1/2),

where α is a given positive constant.

In fact, the HSS iteration method is a stationary two-step matrix splitting iteration method induced by the matrix
splittings

M1 = αI +H (A), N1 = αI −S (A),
M2 = αI +S (A), N2 = αI −H (A).
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It converges unconditionally to the unique solution of the non-Hermitian positive definite linear system (1.1) for
any initial guess. For distinction, we call Methods 4.3 and 4.4, respectively, the HSS iteration schemes I and II, or
shortly, HSS-I and HSS-II, in the subsequent discussion.

In actual computations, the iteration parameterα is chosen to be the experimentally optimal one that minimizes
the number of iteration steps of the HSS iteration method. Wesolve the linear sub-systems with respect to the
coefficient matricesαI +H (A) andαI +S (A) iteratively by the PCG or the PCGNE (preconditioned conjugate
gradient for normal equation) methods, with the incomplete Cholesky (MATLAB codeichol(sparse(·))) or
the incomplete LU (MATLAB codeilu(sparse(·))) factorization preconditioners [18].

We describe in detail two experimental examples in the following.

Example 4.1. (See [1, 6]) The linear system (1.1) is of the form
[(

K +
3−

√
3

η
I

)

+ i

(

K +
3+

√
3

η
I

)]

x = b, (4.1)

whereη is the time step-size and K is the five-point centered difference matrix approximating the negative Lapla-
cian operator L= −(uxx+uyy+uzz) with homogeneous Dirichlet boundary conditions, on a uniform mesh in the
unit cubeΩ = [0,1]× [0,1]× [0,1] with the mesh-size h= 1

m+1. The matrix K∈ R
n,n possesses the tensor-product

form K = Bm⊗ I ⊗ I + I ⊗Bm⊗ I + I ⊗ I ⊗Bm, with Bm = h−2 · tridiag(−1,2,−1) ∈ R
m,m. Hence, K is an n×n

block-pentadiagonal matrix, with n= m3. We take

W = K +
3−

√
3

η
I and T = K +

3+
√

3
η

I ,

and the right-hand side vector b with its jth entry[b] j being given by

[b] j =
(1− i) j

η( j +1)2 , j = 1,2, . . . ,n.

Furthermore, we normalize coefficient matrix and right-hand side by multiplying both by h2.

In our tests we takeη = h. For more details about the practical backgrounds of this class of problems, we refer
to [1, 6] and the references therein.

Example 4.2. (See [9, 8]) Consider the linear system (1.1), for which A∈ R
n,n is the upwind difference matrix of

the three-dimensional convection-diffusion equation

−(uxx+uyy+uzz)+
q ·exp(x+y+z)

x+y+z
(xux +yuy+zuz) = f (x,y,z)

on the unit cubeΩ = [0,1]× [0,1]× [0,1] with the homogeneous Dirichlet boundary conditions. The step-sizes
along all x, y and z directions are the same, i.e., h= 1

m+1, and the right-hand side vector b is taken to be b= Ae,
with e∈ R

n being the vector of all entries equal to1. We denote by Re= qh the mesh Reynolds number.

All iteration processes are started from zero and terminated once the Euclidean norms of the current residuals
are reduced by a factor of 108 from those of the initial residuals. In addition, all codes are run in MATLAB
(version R2013a) in double precision and all experiments are performed on a personal computer with 2.66GHz
central processing unit (Intel(R) Core(TM)2 Duo CPU E6750), 2.00G memory and Windows operating system.

5 Numerical Results

By implementing the two equivalent schemes of the PMHSS iteration method used to solve Example 4.1 and those
of the HSS iteration method used to solve Example 4.2, we showthat the residual-update schemes, i.e., PMHSS-II
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Table 1: Numerical Results of PMHSS Iteration Schemes for Example 4.1 at IT= 50

τ
m Method Index

10−4 10−6 10−8 10−10 10−12

CPU 2.69 1.73 3.02 4.69 6.94
32

PMHSS-I
BERR 1.06E-04 1.72E-06 1.34E-08 1.17E-10 1.49E-12
CPU 10.35 10.88 11.57 12.76 15.92PMHSS-II

BERR 5.47E-16 5.45E-16 5.48E-16 5.45E-16 5.47E-16
CPU 11.01 24.38 48.67 72.25 106.50

64
PMHSS-I

BERR 1.08E-04 1.83E-06 1.41E-08 1.32E-10 1.08E-12
CPU 205.12 214.01 236.21 256.48 286.18PMHSS-II

BERR 5.77E-16 5.64E-16 5.62E-16 5.63E-16 5.61E-16

and HSS-II, are always significantly more stable than the direct-splitting schemes, i.e., PMHSS-I and HSS-I, for
large spectrums of the stopping tolerance(s)τ (or τ1 andτ2) of the inner iteration method(s). To this end, we report
numerical results with respect to the number of iteration steps (denoted as “IT ”), the computing time in seconds
(denoted as “CPU”), and the norm of the backward error (denoted as “BERR”) for these iteration schemes. Here
BERR is defined as

BERR=
‖b−Axk‖

‖b‖+‖A‖‖xk‖
,

with k being the iterate index.

At IT = 50, in Table 1 we list CPU and BERR for PMHSS-I and PMHSS-II when they are used to solve
Example 4.1 with respect to different problem sizes and variant stopping tolerances. We observe that for each
fixed m, the CPU for each scheme increases significantly when the toleranceτ becomes smaller; and for fixedm
andτ, PMHSS-I always costs much less CPU than PMHSS-II. In Figures 1 and 2 we depict the curves of BERR
versus IT whenm= 32 and 64, with respect to variant stopping tolerances for PMHSS-I and PMHSS-II when they
are used to solve Example 4.1. From Table 1 and Figures 1-2 we observe that for fixedm the norm of backward
error of PMHSS-I is of the same order of magnitude asτ, but that of PMHSS-II is always of the orderO(u) of
the machine precisionu by no matter whetherτ is large or small. Hence, in actual computations PMHSS-II is
always backward stable independent of the toleranceτ, but PMHSS-I may be backward stable only for thoseτ of
about the orderO(u) of magnitude. As a result, the two equivalent implementations of the exact PMHSS iteration
method have about the same stability property and convergence behavior.

At IT = 250, in Table 2 we list CPU and BERR for HSS-I and HSS-II when they are used to solve Example 4.2
with respect tom = 64, Re= 10, and variant stopping tolerances. We observe that the CPUfor each scheme
increases significantly when either of the tolerancesτ1 andτ2 becomes smaller; and for fixedτ1 andτ2, HSS-
I always costs much less CPU than HSS-II. Moreover, the norm of backward error of HSS-I is of an order of
magnitude likeO(max{τ1, τ2}), but that of HSS-II is always of the orderO(u) of the machine precisionu by no
matter whetherτ1 or τ2 is large or small; see Figure 3 in whichτ ≡ τ1 = τ2. Hence, in actual computations HSS-II
is always backward stable independent of the tolerancesτ1 andτ2, but HSS-I may be backward stable only for
thoseτ1 andτ2 of about the orderO(u) of magnitude. As a result, the two equivalent implementations of the exact
HSS iteration method have about the same stability propertyand convergence behavior.

With regard to Tables 1 and 2, one reason for the CPUs of PMHSS-I and HSS-I being much less than the
CPUs of PMHSS-II and HSS-II is that the stopping criterions of the inner iteration methods adopted in PMHSS-I
and HSS-I are much more easily achievable than those adoptedin PMHSS-II and HSS-II, respectively, especially
when the iterates are approaching to the exact solution of the system of linear equations (1.1). Admittedly, as the
inexactly computed solutions have very different accuracy, the CPUs here do not reflect the computing efficiency of
both iteration schemes, and they only show the overall (or the average) computational costs of the inner iterations,
or in other words, the average numbers of inner iteration steps.
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Table 2: Numerical Results of HSS for Example 4.2 withm= 64 and Re= 10 at IT= 250

τ2τ1 Method Index
10−4 10−6 10−8 10−10 10−12 10−14

CPU 250.17 339.56 423.30 510.85 580.82 583.76
10−4 HSS-I

BERR 3.01E-04 8.66E-05 1.23E-04 1.21E-04 1.21E-04 1.21E-04
CPU 389.48 431.18 495.28 539.88 621.17 703.32HSS-II

BERR 7.33E-17 7.46E-17 7.34E-17 7.34E-17 7.48E-17 7.41E-17
CPU 253.96 345.61 426.30 519.16 584.64 585.40

10−6 HSS-I
BERR 2.52E-05 1.56E-06 2.51E-06 1.09E-06 1.09E-06 1.09E-06
CPU 402.32 442.74 502.64 559.40 626.10 714.77HSS-II

BERR 7.44E-17 7.42E-17 7.46E-17 7.44E-17 7.44E-17 7.39E-17
CPU 272.11 352.52 449.93 524.44 597.51 622.80

10−8 HSS-I
BERR 2.50E-05 1.54E-07 9.74E-09 7.98E-09 1.30E-08 1.30E-08
CPU 455.02 480.71 513.60 574.09 641.13 731.26HSS-II

BERR 7.47E-17 7.47E-17 7.34E-17 7.41E-17 7.46E-17 7.35E-17
CPU 304.95 391.21 466.61 578.35 697.57 941.22

10−10 HSS-I
BERR 2.50E-05 1.48E-07 1.94E-09 3.64E-10 2.20E-10 2.20E-10
CPU 437.73 482.88 535.62 585.11 655.26 739.58HSS-II

BERR 7.46E-17 7.52E-17 7.53E-17 7.48E-17 7.34E-17 7.45E-17
CPU 508.51 614.75 735.35 824.93 903.22 985.34

10−12 HSS-I
BERR 2.50E-05 1.48E-07 1.90E-09 2.48E-11 3.78E-12 3.78E-12
CPU 459.49 532.42 579.38 609.75 683.28 768.80HSS-II

BERR 7.61E-17 7.44E-17 7.50E-17 7.47E-17 7.49E-17 7.19E-17
CPU 520.55 668.16 764.35 756.78 624.93 628.16

10−14 HSS-I
BERR 2.50E-05 1.48E-07 1.90E-09 2.48E-11 3.78E-12 3.78E-12
CPU 481.66 521.08 589.94 642.01 713.43 806.06HSS-II

BERR 7.49E-17 7.51E-17 7.40E-17 7.46E-17 7.42E-17 7.45E-17
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Figure 1: Pictures of BERR versus IT for PMHSS whenm = 32, with PMHSS-I (left) and PMHSS-II (right).
τ = 10−4: the star line “∗ ∗ ∗”, τ = 10−6: the cross line “×××”, τ = 10−8: the dash-dotted line “− ·− ·−·”,
τ = 10−10: the solid line “−−−”, andτ = 10−12: the circle line “◦ ◦ ◦”.

6 Concluding Remarks

Stationary matrix splitting iteration methods for solvinglarge sparse systems of linear equations have two typical
equivalent reformulations: the residual-update scheme and the direct-splitting scheme. Both theoretical analyses
and numerical experiments have shown that the former is always significantly more stable than the later for a
large spectrum of the stopping tolerance of the inner iteration method. Moreover, for both reformulations, inexact
solutions of inner linear systems associated with the matrix splittings may considerably influence the convergence
and the accuracy of the approximate solutions computed in finite precision arithmetic, a finer tolerance often costs
more computing time, and their exact implementations have about the same stability property and convergence
behavior. These conclusions hold equally true for both single- and two-step matrix splitting iteration methods.
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Figure 2: Pictures of BERR versus IT for PMHSS whenm = 64, with PMHSS-I (left) and PMHSS-II (right).
τ = 10−4: the star line “∗ ∗ ∗”, τ = 10−6: the cross line “×××”, τ = 10−8: the dash-dotted line “− ·− ·−·”,
τ = 10−10: the solid line “−−−”, andτ = 10−12: the circle line “◦ ◦ ◦”.
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Figure 3: Pictures of BERR versus IT for HSS whenm= 64 andτ1 = τ2 ≡ τ, with HSS-I (left) and HSS-II (right).
τ = 10−4: the star line “∗ ∗ ∗”, τ = 10−6: the cross line “×××”, τ = 10−8: the dash-dotted line “− ·− ·−·”,
τ = 10−10: the solid line “−−− ”, andτ = 10−12: the circle line “◦ ◦ ◦”.
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