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Abstract

We study numerical behavior of stationary single- or twepstatrix splitting iteration methods for solving
large sparse systems of linear equations. We show thatdheshutions of inner linear systems associated with
the matrix splittings may considerably influence the cogeace and the accuracy of the approximate solutions
computed in finite precision arithmetic. For a general statry matrix splitting iteration method, we analyze two
mathematically equivalent implementations and find theesponding componentwise or normwise forward or
backward stable implementation.

Keywords: matrix splitting, stationary iteration method, convergenate, rounding error analysis, backward
error.
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1 Introduction

We consider an iterative solution of the large sparse sysfdmear equations
Ax=b, AeC™ and beC", (1.1)

whereAis a nonsingular and, in general, a non-Hermitian matrig,kais the corresponding right-hand side vector.
Many iteration methods for the linear system (1.1) are basedfficient splittings of the coefficient matriin
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the formA =M — N, whereM is a nonsingular matrix such that a linear system with thdfioient matrixM is
easily solvable. The classical examples areJdeobij the Gauss-Seidednd thesuccessive overrelaxatigSOR)
iteration methods [31, 19, 18, 20], in which the matiis split into its diagonal, off-diagonal and triangular tsar
giving rise to the diagonal and the lower/upper triangulatnoesM, respectively; see [32, 33] and the references
therein. The modern examples are Hermitian and skew-Hermitian splittingdSS) iteration method [9] and its
variants such as PMHS®réconditioned and modified Hermitian and skew-Hermitiglitting) [7], in which the
matrix A is split into its Hermitian and skew-Hermitian parts, gigirise to the shifted Hermitian and the shifted
skew-Hermitian matriceM; see also [11, 5, 6] and the references therein. In genbmHSES iteration method
belongs to the framework of two-step matrix splitting iteya methods [14, 3, 4], which, for given two splittings
A= M; —N; andA = M, — N, with M1 andM, being nonsingular, iterates alternately between thesephtlings

in an analogous fashion to the classiaiernating direction implicit(ADI) iteration method for solving partial
differential equations [27, 16]; see also [8, 10] and then&fices therein.

In some cases, computing the exact solution of a linear systi¢h the coefficient matri (or M1 or My) can
be expensive and impractical in actual implementationdufiher improve the computing efficiency, we usually
solve this linear system, called the inner linear systemarmther iteration scheme to some prescribed accuracy,
resulting in an inexact or an inner/outer iteration methsmgt [12, 9, 11, 6]. For example, in the category of two-
stage matrix splitting iteration methods, a linear systeith whe coefficient matrixM is solved iteratively by an
inner iteration scheme based on another splitithg: F — G, with F being a nonsingular matrix; see [26, 25, 13].
This two-stage matrix splitting iteration method has beterlied intensively by many authors in the literature,
see, e.g., [17, 12, 2, 15] and the references therein. Thadhsolution of the inner linear system may cause
two important effects on the numerical behavior of the oleratrix splitting iteration process, i.e., a certain
convergence delay of the iteration sequence and a possitileazy limit on the computed approximate solution.
By the componentwise or the normwise backward error aralg2§), in this paper we will prescribe the tolerance
T (or the tolerances; andty) for the inner iteration method, with respect to the spigtimatrixM (or the splitting
matricedM; andMy), in a single (or a two-step) iteration process, which egjeintly determines the number of the
inner iteration steps. In other words, we interpret eachputed approximate solution of an inner linear system
as an exact solution of a perturbed linear system, whereetaéve perturbation of the coefficient matrix of the
inner linear system, measured either by the size of its comts or by its norm, is bounded by the parameter
(or the parameters, andt,), being of the ideal order = &'(u) (or 11, T2 = ¢'(u)) for a backward stable method,
but being much larger than the roundoff umin practical implementations.

In this paper, we concentrate on the question what is thealsestacy we can obtain from such inexact schemes
when implemented in finite precision arithmetic. The faett tthe inner solution tolerance strongly influences the
accuracy of the computed iterates is known and was studisévieral contexts [9, 29, 30, 11, 23, 24]. Station-
ary iterative methods with the inner linear systems soleedidrking accuracy have been analyzed in [21, 15].
However, significantly less is known for iteration metholattuse the inexact nontrivial splittings. We will also
analyze the maximum attainable convergence delay of inéwaestep splitting iteration methods in terms of these
parameters and in terms of spectral properties of correipgmsplitting matrices. In this sense we extend the work
achieved in [21] and give similar results to [23, 24]. In owrk, we will analyze two mathematically equivalent
implementations and point out that the one that is compavisair normwise forward or backward stable. Given
a computed approximate solutimmo'the linear system (1.1), an iteration method is calledpomentwise forward
stable if the errox > x satisfies the boun® — x| < ¢'(u) |A~1||Al|x|, and is called normwise forward stable if the
Euclidean norm of the error satisfies the bouisid- || < @'(u) ||A~L||[|Al|||x|. Similarly, an iteration method is
called componentwise backward stable if the resitiualAX satisfiegb — AX| < &'(u) (JA||X| + |b|), and is called
normwise backward stable if the Euclidean norm of the redidatisfieg|b — AX|| < &'(u) (||Al|||X]| + ||bl|)-

The organization of the paper is as follows. In Section 2 wavdéhe main results on the convergence delay and
maximum attainable accuracy for stationary (single-stegiyix splitting iteration methods. Section 3 is devoted to
the analysis of the stationary two-step matrix splittiregation methods. In Section 4, we review the HSS and the
PMHSS iteration methods [9, 7], describe two experimentahgples where the tested linear systems arise, and
state the computing settings that are followed in the implet@tions. The numerical results are given in Section 5.
Finally, in Section 6, we end the paper by a few concludingas

Throughout the paper, we adopt the following notations amtepts. The terrh denotes the identity matrix
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of suitable dimension and the symbol|| indicates the Euclidean norm of either a vector or a matrix.ggiven
vectorx and matrixX, |x| and|X| stand for their absolute values, ajhd| and||X|| stand for their Euclidean norms,
respectively. WheiX is a square and nonsingular matrix, we use the quasfi¥) = ||X||[|X 1| to represent

its Euclidean-norm condition number. Note thdX) = k(X ~1). For a square matriX, we denote by (X) its
spectral radius. For distinction with their exact arithimepbunterparts, we denote quantities computed in finite
precision arithmetic by using an extra upper-hat. In addjtwe assume the standard model for floating-point
computations and denote hythe unit roundoff. The tern@'(u) is a low-degree polynomial in the problem
dimensionn multiplied by the unit roundoffi. It is independent of the system parameters but is depermaent
details of the computer arithmetic. For simplicity, we dad egaluate the terms proportional to higher powers of
and also occasionally skip the technical details that woelgktively affect the presentation of our results.

2 Stationary Matrix Splitting Iteration Methods

Assume thah = M — N is a splitting of the coefficient matrii of the linear system (1.1), witlM being nonsin-
gular. Starting from an arbitrary initial vectap, a stationary (single-step) matrix splitting iterationthwa for
solving the linear system (1.1) produces a sequence of gpate solutionsg 1, k=0,1,2,..., with

X1 =M (Nxc+b) (2.1)
or
Xicr1 =X+ M H(b— AX). (2.2)

Note that the iteration schemes (2.1) and (2.2) are matheatigtequivalent, but as we will see later they are
numerically different in actual implementations. Froml{2and (2.2) we see that the error of the approximate
solutionxy, 1 — x and the associated residiet Ax . 1 satisfy, respectively, the recurrences

X1 —X= (I =M7A) % —X) = G —X) (2.3)
and
b—Ax1= (I =AM 1) (b— Ax) = F (b— AX), (2.4)
with
G=1-M"!A and F=I-AML.

Note that the matriceS andF have the equivalent expressigBs= M~IN andF = NM~L.

In practical situations, the inner linear systems, indungthe iteration schemes (2.1) and (2.2), with respect to
the coefficient matris, cannot be solved exactly. Instead, we will assume thaye@nputed solution of a linear
system with the coefficient matrid will be given by an approximate solution that can be inteigrteas an exact
solution of a linear system with the same right-hand sidéorebut with a perturbed coefficient matfiA + AM.
Note that under reasonable assumption on the size of thenmamAM, the inverse of the matrid + AM can be
written in the form

(M+AM)" = (1 +aH)M =M1 +AE),
with
AH = —(M+AM)" 1AM and AE = —AM(M +AM)~ L,

If M~ in the iteration matrice§ andF appearing in (2.3) and (2.4) are straightforwardly repdeme(M +AM) 2,
then we could obtain the recurrences with the iteration icegG + AG andF + AF, where

AG=AH(G—1) and AF = (F —I)AE.
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Hence, inexact solutions of the inner linear systems wispeet to the coefficient matr affect the convergence
rate of the corresponding overall iteration scheme. RoughEaking, a potential delay in the convergence is
determined by the sizes of the incremehitt andAE. For stationary iteration methods, this phenomenon has bee
analyzed by several authors; see, e.g., [28, 21, 20, 15].

The accuracies of the approximate solutions computed byetyuivalent iteration schemes (2.1) and (2.2) can
be estimated by the standard tools of rounding error arg]g26i. The iteration scheme (2.1) has been analyzed
by Higham and Knight in [21], where they discussed the remuoe for the computed approximate solutiggs,,”
k=0,1,2,..., inthe form

(M 4+ AMy)Ri1 = NS+ b+ As, (2.5)

with

IAM| < O(u) M| and  [As| < &/(u) (IN[[R|+ [b]); (2.6)
see also [20, Chapter 17]). The bound|&My| is valid if the matrixM is triangular, which is the case for the
stationary relaxation iteration methods such as Jacohis&8&eidel and SOR [18, 31]. These classical matrix
splitting iteration methods can be shown to be forward stala componentwise sense and backward stable in
a normwise sense. The inner linear systems with respecetodéfficient matri¥vl are, in general, not easily
solvable, so they are solved iteratively in practical inmpdmtations. As a result, we cannot expect that all these
inner linear systems can be solved in a backward stable \watedd, we assume that the relative componentwise
backward error associated with, 7 is bounded by the paramete(r < 1), i.e., we use the stopping criterion based
on the backward error and terminate the inner iterationgseoncéAMy| < T|M| is satisfied. As a matter of fact,

assumingr - condM) < 1 seems reasonable and some accuracy could be achievedputiogrthe approximate
solutions for all inner linear systems.

In the following, we will analyze the maximum attainable acy of the computed approximate solutions
caused by the inexact solutions of the inner linear systeithstiae coefficient matriv. More specifically, we are
going to show how the level of inexactness given by the tolega affects the maximum attainable accuracy of
the computed approximate solutigg 1 defined by (2.5), together with

[AMy| < T[MJ, and |As| < &/(u) (IN][%] + [b]),

while as will be shown later for the scheme (2.2) the maximutairgable accuracy will be proportional to the
roundoff unitu.

Given an initial guessy; the computed approximate soluti®p 7, fork=0,1,2,..., is thus the exact solution
of (2.5), which can be reformulated as

k .
K1 =GR +M (b +Ayy) = G + %G'M*(bwyk_i), (2.7)
i=

where
Ay i = A i — MM iRi_iv1, i=0,1,....k (2.8)
For the residual vectors corresponding to the solution, by making use of the identities
AG=AMIN=NMA=FA and I-AM1=NM1=F

we can derive the recurrence in the form
k .
b— AR 1=F(b—AR) — (I — F)Ay, = F*}(b— A%) + %F'(l —F) Ay (2.9)
i=
Using the identities

k .
X = Gx+ M 1p = GKt1x+ Z}G'M’lb,
i=
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together with (2.7), we then obtain the formula for the efjgn — x of the (k+ 1)-th approximate solutiory} 1
computed by the scheme (2.1) as follows:

k
K1 —X= Gk+1(io —X)+ ;GI M‘lAyk_i.
i=
Therefore, the componentwise bound for the exieg = x is given by
ko
Rer1—x < |G (Ro—x)| + zOIG'\ M~ max |y (2.10)
= >

Analogously, using (2.9) we can obtain the componentwissbdor the corresponding residual A%, 1 as
follows:

k
A kK+1/h _ A i '
o= Afsa] < [FE (0~ A%0) + Y IFIII ~ F| ma i (2.11)

If the spectral radius of the iteration matiiis less than 1, i.ep(G) < 1, then the termiG**1(% — x)| converges

to the zero vector and, hence, for a latgéhe bound for the maximum attainable accuracy of the congpute
approximate solution (measured in terms of its error) iegiby the supremum of the second term in (2.10).
Equivalently, if p(G) < 1, thenp(F) < 1 and the termF*"1(b — A%y)| converges to the zero vector, too. As
a result, for a larg&k the bound for the maximum attainable accuracy of the congpapproximate solution
(measured in terms of the residual) is given by the suprenfithecsecond term in (2.11). Indeed, then the series

G'and Y F' converge and, with
i;ﬁ i;)
|AM;| < T|M|
and
|Ayi| < [AM;[[%i+1] +[As] < TM[[Ri11] 4 O/(u) (N][%i] 4 [b]),

corresponding to the recurrence (2.5) we obtain the bounds

Res1—X| S (_;m) ([riM—lnw+ﬁ<u>|M-1||N|]0<rin<ak§l|ya|+ﬁ<u>|m-l||b|) (2.12)

and

b Afr| S <i|F‘|> =1 I+ o N ma 4]+ o) ). (2.13)

Usingt > 0'(u) and
bl = |AX < |Allx] < (IM]+[N])[x],
we can rewrite (2.12) and (2.13) into
o < - i -1 .
Rt X 5T (%'G |> MM+ 1) (a5 ) 214)

and

— AR < i _ <
b-ARal 1 (QF |> =1 (1IN, a5+ ). (215)
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0 [ee]

Provided that the entries 2}\Gi| or Z}|Fi\ are not too large, in the case of backward stable solutioadl of

i= i=

inner linear systems with= ¢'(u), the estimates in (2.14) and (2.15) guarantee small forasaticbackward errors

in the componentwise sense, respectively. These boundsicahe factor0 <,r<nka>§ |%i| that can be also significant
i<k+

depending on the convergence behavior of our stationargtiten method. Provided that this factor is not too
large, i.e.,0<.r29xl|>‘q| ~ |x|, the componentwise forward or backward stability are thesueed ifM~1| ~ |A~2|
<I<k+

and|M|+ |N| = |A]. However, in practice we have> @(u) and, therefore, the maximum attainable accuracy in
general does depend on the parameter

The normwise approach is similar. The componentwise boim(®s6) can be replaced by the normwise ones
[AMi[ < T[Mand [|As]| < &/(u) ([IN][[[X] + [[b]])-
So from (2.8) we can correspondingly obtain the estimate
Ayl < |AMi[[1%2]l + [[Asi]] < T|[MI|[[%ia]| + & (u) (INHIR] 4 [1bI]).- (2.16)
Now, analogously to (2.10) and (2.11) we have the normwismtle
k+1 T 1
$ _ < +1le ( - .
(%2 = X[ < |G (%o X)”+.ZOHG IHIM™=] ma Al (2.17)
and
k+1 ¢ i
— A% < — A% " = ill. :
[[b— AReal| < [F*5(b AXo)||+i;IIF IV =FI max lavi] (2.18)

Provided thaf|G|| < 1 and||F|| < 1, it holds that

k k k
- - - 1
Gl <6<y o)< —2
2G| =2 Iel= 216l < 7=

and

1

kK Ko K .
F! SZ}HFIHSZ)HFH'S :
i;ﬁ = = 1—|IF]l

Similarly to [20] we define the normwise growth factor

9k+1: Sup {H}a
o<i<k+1 U [IX]

so that
IR < BeralXl,  i=0,1,... k+1
By making use of (2.16) and
[0l < ([IM[ + [INJD]], (2.19)
we have foii =0, 1,...,k that

18Yi | < Bpa(TIM]| + @ (W) [IN]DIXI[ + & (u)][b]
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and

18y B (TIM] + G (W)IN[DIX][ + & W) (IM][+ [INID I

<
< (14 Baa) (TIM[[+ G (WIINID X,

where we have used the fact> £'(u). From (2.17) and (2.18) we then have

1
%1 =X < 1G4 — )| + T ﬁgﬁ [T&(M)+ &) IMHIN]] x| (2:20)
and
. . | —F
b Aol < [ (b~ AR) | + 1= ”F'” (B (T[MI|+ G WINDIX| -+ &(u) [b]]). (221)

Here in the derivation of (2.20) we have also applied therest (2.19).

In practical situations, when>> &'(u), the relative error of the computed approximate solutidhtve propor-
tional to the parametar. Provided that|G|| and||F|| are not too close to 1, arff 1 is not too large, neglecting
the terms with&'(u) in (2.20) and (2.21) we see that the normwise relative emdrthe normwise residual will
approximately satisfy

R —X|| 1+ 6ea

X[~ 1G]

B 1|/l = F |
1-[F|l

k(M) and |b—ARual ST M1,

respectively. In the case of backward stable solutionslafiaér linear systems witlh = &'(u), the bounds (2.20)
and (2.21) reduce to the error bound (17.11) and the reslgtmahd (17.19) in [20]. This guarantees a small
normwise forward error ik (M) ~ k(A) and a small normwise backward erron|if1|| ~ ||A|| under the above-
mentioned conditions.

As also noted in [22], if greater computing accuracy is regplii we are better to work with the recurrence
(2.2). This iteration scheme is similar to the iterativenmefhent, which is a popular technique for improving the
computing accuracy of linear solvers; see [18]. We will shbat under mild conditions this iteration scheme will
deliver approximate solution with the accuracy being prtpoal to the roundoff uniti, but independent of the
parameter. This indicates a significant difference from the iteratisheme (2.1).

Given an initial guess; at the(k+ 1)-th step of the iteration scheme (2.2), we first compute thiglual of the
previously computed approximate solutixyas follows:

fk =b— AR+ Arg, with |Ar] < O(u) (|b] + |A]|[X|)- (2.22)

Then we solve approximately the correction equation withrttatrixM so that the computed correction vectgr *
satisfies

(M+AM)Z =fx, with |AM| < T|M|, (2.23)

where the stopping criterion in the inner iteration is agesumed to be based on the backward error smaller than
the parameter. We finally obtain the approximate solutiag, 1 that satisfies

K1 = R+ Z+Ax,  with A% | < u(|R + |2])- (2.24)

This computing procedure is well defined if the matkix+ AMy is nonsingular, which is guaranteed under rel-
atively mild conditions on the accuracy in the inner itesai (measured by the parametgr e.g., Omin(M) >
|AM]|, k=0,1,..., whereomin(M) represents the smallest singular value of the madriBy using (2.24) we can
derive the following recurrences for the ersqr.{ — x and the residuab — A%, 1 corresponding to the computed
approximate solutiomy 1:

Rer—X = [I = (M+AM)A] (R —X) + (M + AMy) "L Ary + Axg, (2.25)
b—AR:1 = [I—AM+AM) ] (b—AR) — A(M + AMy) ~*Ar — ADX. (2.26)
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We now derive componentwise bounds for the exggr = x and the residud — A%, 1 based on the identities
(2.25) and (2.26). To this end, from the definition of the updawe have

% = (M+AM) t(b—AR) + Ay
(M +AMg) " AX— %) +Ary] . (2.27)
Therefore,
2] < [(M+AM) Y [Jb— A% + [Ary]
< [(M+AM) T [[b— A% + 6/(u) ([b] + |Al%])] (2.28)
and

[(M+ AM) " [|Al[x— R + [Ary]

<
< (14 0(W) [(M+AM) Y AI(X] + &) (2.29)

It follows straightforwardly from these estimates, the bdsi(2.22) and (2.24), as well as the identities (2.25) and
(2.26) that

R =X < |1 = (M +AM) AR — X[ + €/(U) | (M + AMy) ™ [A[(IX] + [R]) + Ul (2.30)
and
b—Afya| < [|1 = AM+AM) 7+ u|(M+AM) ~HA] |b— A%
+6/(U) [AM + AMy) (|| + |Al|%]) + Ul Al[%- (2.31)
If p(t|M~2||M]) < 1, then fromAMy| < T|M| we have
(M +AM) | < i(TIMlIIMI)i M2 = (1= TM M) M

and
AM +AM) ™ < |1 - F| Z}(nwlnwu)i =[I—F[(1—tM~YM]) .
=

Moreover, we claim that there exist matrid®&S andAF such that
Il — (M+2AaM) 1A < |G+ AG|
and
1 =AM +AMy) |+ | (M +AM) H|A] < |F +AF|.

Indeed, such matricesG andAF do exist and they can be bounded as

AG] < T Z}(TIM_lHMI)iIM_lllMIIM_lAI

=
— oM YMM A (1 — 7MY M)
and

AF| < (T|AM™Y|M]+ulA) MY .EO(TIM_lllMI)i
i=

_ _ _ -1
= (t]AMH|M|+ulA)) MY (1 —T[M~HM]) .
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As a result, we can obtain the following bounds iy, 1 — x| and|b — ARy 1]:

Rea—x < G+AG| %X+ () (1 — TIMYIM[) " MY A + %) + Ul
< |G+Ae|k+1|f<0—x|+i}|e+AG|i
2
| =i 1A (1 el ) +u masl| (2.32)
and
b Afrl < [F+AF]b— A%+ o(u) |l — F| (1 — T/MIM[) " (] + AIS) + UlA|%
<

k .
|F+AF|k+1|b—A>“<o|+zo|F+AF|'

i=
Ao =F[ (1 —tM M) ( o] + Al max |% Al max %] | . 2.33
o == i) (ol 4 e ) + Al maxial | (239

Provided that the spectral ragh{|G+ AG|) andp(|F + AF|) are less than 1, the first terms in (2.32) and (2.33)
will be small after sufficiently large number of iteratiomps. Then the errog. ;1 — x and the residud — AR, 1
will be proportional to the roundoff unit as

K
fe1—X < S IG+AGI o) (1= 1M~ LMD 2 IMLAL [ x|+ max|% U max|x;
Ry 1 |Ni;| +AG| { (W) (I=1[M~HM]) T IMH|A (| |+O§i§k|xl| + ogigk' i

and
k . .
b—A% 1| S S IF+AF] ||l =F| (I —TtM~|[M bl + |A] max | ulAl max || .
oAl £ 3 IF +0FF | 20)1 =1 (1=t~ (114 maxia ) + A masi|

These bounds are significantly better than the bounds wedidaeed for the recurrence (2.1). Although in prac-
tical situations it ist > ¢'(u) that is used in the iteration scheme (2.2), we will obtain/agcurate approximate
solutions after sufficiently many iterations.

For the normwise approach, now the componentwise bound®.22), (2.23) and (2.24) are, respectively,
replaced by the normwise ones

fk=b—AR+Ar,, with [[Ar| < &(u) ([[b]| + [|A[l[%]]),

(M+AM2Zc = fi, with  [[AM]| < T[|M]|
and
Rir1 = R+ Z+ D%, with  [[Ax]| < u(][Rell + [1Z])-

Based on the identities (2.25) and (2.26), using an anakgpproach we can derive the normwise bounds

||)’zk+l_XH < (u) 1+9k

=16l - k(M) (1[Gl + [T -Gl

71 _
E. (M A + 2 T (M)

and
M —F
1—|IF[| = T(M) (L~ [[F[[+ [l = F[) —ul[M2 A

: [|b| -+ Bl|A 1| <1+ 1|_|T—7K|£||\|/l)>}

b—A%l = O(u)

~
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for the errong.. 1 — x and the residud — A%y, 1, respectively, under the assumptions
IG+AG| <Gl +TKk(M)(L-TK(M)) |1 =G| <1 (2.34)
and
IF +AF[| < [IF |+ (1~ Tk (M)~ (Tk(M) [l = F || +-ullM~ ] A]) < 1. (2.35)

Recall that6 is the growth factor depending on all preceding computettiés{%; ik=0' Again, these bounds
guarantee small normwise forward and backward errorsentisely, under mild conditions as stated in (2.34) and
(2.35).

In summary, if the iteration schemes (2.1) and (2.2) areseitlomponentwise or normwise forward or back-
ward stable, and if the splitting matriX is as sparse and structured as the coefficient mAtrtken, at thek-th
iteration step of these two schemes, computing the vétxpr- b should be as costly as computing the residual
b— Ax. So the iteration scheme (2.1) costs about the same workéstthe iteration scheme (2.2) at each iteration
step. Roughly speaking, provided that the inner linearesysthaving the same coefficient matkikare solved
inexactly in accuracies controlled by the same toleramdbe iteration scheme (2.2) can always achieve higher
computational efficiency than the iteration scheme (2.1).

3 Stationary Two-Step Matrix Splitting Iteration Methods

In this section, we study the numerical behavior of the atatiy two-step matrix splitting iteration methods
[27, 16, 3, 4, 12, 14] and give results similar to the statigrmaatrix splitting iteration methods in Section 2.
The stationary two-step matrix splitting iteration franmmwhas been studied extensively by several authors from
several perspectives, see, e.g., [9, 8, 10, 5, 6] and theerefes therein. We consider two splittings of the matrix
Ain the formA = M1 — N; andA = My — N. Given an initial vectoKy, we define the stationary two-step matrix
splitting iteration method by the following two successieeurrences

MiXei12 = Nixe+Db,
MaXci1 = NoXep12+b.

Alternatively, we can use these recurrences in the mosgbktfarward way as

X2 = MpH(Nuxe+b), (3.1)
X1 = Myt(NoXei1j2+h). (3.2)
Denote byG; = M Ny = | — H1A andGy = My Ny = | — HoA, with Hy = My andH, = M, L. Then (3.1) and

(3.2) can be rewritten as
Xer1/2 = G1Xc +Hib
and
X1 = GoXiy 172 + Hab.
These give rise to the alternative recurrences

Xk+l/2 = X+ H]_(b—AXk), (33)
Xer1 = Xgp12+Ha(D—AX1)2). (3.4)

At each iteration step, the recurrences (3.3) and (3.4)\evthe computations of two residuabs— Ax, and
b— AXc11/2, Which require two matrix-vector multiplications with pect to the matris\. Accordingto Lemma2.1
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in [9], this can be avoided, however, by the substitutiorof > in (3.3) intoxk, 1 in (3.4), leading to

X1 = X+ Hi(b—AX) +Ha[b—A(x+ Hi(b— Ax())]
(I = HaA) (I — HiA)x + [(| —HyA)H1 + Hz]b
GGy Xk + (GzHl + Hz)b

= Gx+Hb,

where
G=GyG; and H = GyH;+Ho. (3.5)

We remark that the matritld admits the following equivalent expressions

H = Hj +HyG; = H1 + Hy — HpAH; = Ha(M1 4+ Ma — A)Hj, (3.6)
and the matrice& andH satisfy the identityG =1 — HA. Thus, instead of (3.3) and (3.4) we can use only one
single recurrence

Xer1 =X+ H(b— Ax). (3.7)

The detailed convergence analysis about the alternatiitgrgpiteration method can be found in [14, 3, 4] and
the references therein.

In practical situations, the inner linear systems, indungthe iteration schemes (3.1) and (3.2) with respect to
the coefficient matricedl; andM,, cannot be solved exactly, and they are often solved ingxlagtsome other
iteration schemes; see [9, 11] and the references thetéatiolvs that inexact solutions of the inner linear systems
with respect to the coefficient matricklg andM; affect the convergence rate of the corresponding oveeadtion
scheme.

In the following, we estimate the maximum attainable accyfar approximate solution, computed with (3.1)
and (3.2), to the linear system (1.1). Using the same apprastor the stationary matrix splitting iteration method
defined by (2.1) in Section 2, we can write

Rtz = My (NuRe+b+As ), (3.8)
Reir = Myt (Nofyr/2+ b+ Dsea), (3.9)
where
|AS¢;1/2] T1|My[[Riey 1/2] + O (u) (INa|[Re| + [b]),

<
<

[ACHE] T2|M2|[Rc+ 2] + €(U) (IN2|[Res-/2] + [B]).-

Again, 1, and 1, are the tolerances employed to describe the accuraciedvingthe inner linear systems with
respect to the matricelél; and My, respectively. Substituting, ;> into the formula ofxc,;, we obtain the
expression

i1 = GR + Hb + Ay, (3.10)
with
Ay = GzM{1A5k+1/2+ My 1AS 1.
Denote byF; = NyM;  andF, = NoM, . Then it follows from direct manipulation that
ALY = F(I — F1) Ase 12+ (I = F2) A1,

where we have used the commutative property of the mathic@siM, Ny, i.e., AM, 1N, = M, NA.
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From the bounding conditions dxs, 1/, andAsg, ; we have the estimates

OS¢ 12l < TaMaf[Reray2] + O'(U) (IN2|[R] +[b])
< (11/M1]+ O (u)|N1|]) max [|%i|+ O(u)|b|
—kkt1/2

and

IN

[ASicr1/2 (T2|Ms| + G/(u) [Ne]) :m§§/2|%|+ O(u)(IMa] + [Naf) X

IN

M O(u)|N max |X ,
(taMl+ o) ) (e [+ )

as well as

|AScr1] T2|Ma|[Xcr 1| + € (U) (N2 [Rer1/2 + [0])

M N Xi b
(T2IMal + 0(u)Na])_ max 5]+ ()b

INIA

and

IN

(2[M2] + G (U) IN2[)  max  [%] + @(u) ([Mz] + [N2|) x|
i=k+1/2k+1

M o N Xi .
(raVel+ o0 ) (|, max 1+ 1)

|AS; 1]

IN

Here in the estimates df\s.,/>| and|As1| we have used the factg > &'(u), 12> O(u), and applied the

bounds

bl = [(M1=Np)x| < (|Mq] +[Na|)[x],
bl = [(M2—N2)x| < (|M2]| +[N2|)[x].

Therefore, according to the formulasfy, andAAyy, it holds that
By < [GoMyH[AS /2] + M3 |AS 1|

< |GoM{ (T4 |My| + @(u) N max _|%i| +|x
< 1GaM; (Ml + () N (e [41-+1])

+ My | (12| M| + @(u) N max ||+ [x
Mg (Ml + o0 NG (|, max [81+1)

< [|G2Ml_1|(T1|M1|+ﬁ(u)|N1|)+|M2_1|(T2|M2|+ﬁ(u)|N2|)]
( max |x-|+|x|)
i=kk+1/2,k+1
and
|ALyk| < [Fa(l = F)[|ASeta/2] + 1 — F2l[Asci 1]
< |Fz<|—F1>|[<r1|M1|+ﬁ<u>|N1|> max |z-|+|b|]
ki1/2

=l (taMel + S WING) | max IR+ o]

i=k+1/2

3

Because (3.10) immediately implies

k .
1 = G150+ 3 G(HD+ By
i=

(3.11)

(3.12)
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by making use of the identity

k .
x=G*x+ %G‘Hb
i=

and the relationshipG = FA, with F =1 — AH = F,F;, we can obtain the recurrences
k
Rer1—x =G (R —x) + zoGI A\ (3.13)
i=
and
k .
b— A% 1 = F¥(b— A%o) + %F'AAyk_i (3.14)
i=

for the errong.. 1 — x and the residud — AR, 1. It then follows straightforwardly that
k .
1= < |Gk“||io—x|+Z}|G'||Ayk,i|, (3.15)
1=
ko
b— AR < |Fk+1||b—A>zo|+§0|F'||AAyk_i|. (3.16)
1=

If p(G) < 1, thenp(F) < 1. Hence, the term&*+2||% — x| and |F¥*+2||b — A%| converge to the zero vector.
As a result, for a largk the bounds for the maximum attainable accuracies of the ated@pproximate solutions
(measured in terms of both error and residual) are givendgupremums of the second terms in (3.15) and (3.16),
respectively. Indeed, corresponding to the recurren@3,(&fter substitutions of (3.11) and (3.12) into (3.15) and
(3.16), respectively, we obtain the bounds

k .
R =X = Z}IG'I [1G2My (T2 |My |+ & (u) [Na|) + M | (T2IM2| + & (u) N2
i=

| max |%g X
(,.max 852l + 1)

and

¢

k .
bl £ 5 Pt~ o (Ml + 000 M) a3l 15

=Pl (1Ml + 00 Nel)_max 31+ 101

Kk kK
Provided that the entries of the vectlgr<2km§\|>x“<<i_l)/2| and the entries in the matrz)|G'\ or ZO|F'\ are not
<SI<Z2K+- i= i=

too large, in the case of backward stable solutions of akiifinear systems withy = ¢'(u) andt, = &'(u), these
estimates then guarantee small forward and backward enrtite componentwise sense, respectivelWIifl| ~
IM; Y| & |A71] and [My| + [Ny| ~ |[Mg| + |Np| = |A|. However, in practice we have > ¢(u) and 1, > &(u).
Therefore, the maximum attainable accuracies in generdégdend on the parametarsands.

The normwise approach can be conducted in a similar fashiofact, by introducing the normwise growth
factor

B1= sup
1<i<oka3  |IX]l
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so that
[Xi-1)/2ll < GallX]], T=0,1,...,2k+3,

if ||F|| <1 and||G|| < 1 we can correspondingly obtain the normwise bounds foritee & 1 —x and the residual
b — A%, 1 as follows:

[Rerr =X~ 1+ 6
S T1]|G2|| K (M1) + T2 k(M2
I R Toq] [(12]| G2l K (My) (M2))
+6(u) (|Gl [IMH]IN | + (M IN2)]
N Br1
lo—ARal = = [(1a]|Fo(1 = Fo) [[[Ma]] + T2l = Fol[M2]))

1-Fl
+0(U) ([[F2(F = Fa) [[INL]| =+ 11 = F2l[ N2 ][]
|

Iyt — By 4+ 1 = Fall:

+
1-[IF|

Provided thatr; > ¢'(u) and1z > €'(u), these bounds can be approximately reduced to

R =X~ 146
= 11||G2|| K (My) + T2k (M2)),
> L raGal (M) + 7oK (M)
R 6k
- ARl £ o (Tl — Rl M+ Tl ~ Fol Ml
B R R = R,
T JF]

Roughly speaking, the limiting accuracy level measurediims of the error is given by the quantiy|G,|| k (M1) +
7, K (M), so ther;-term is damped by the quantity;||. In actual implementations, we should balance the choices
of the tolerances; and1, in such a way that a desired overall accuracy of the errorhigeged. For example, we
may setr; = HG—TZH andt, = 1, wherer is a prescribed tolerance. Consequently, it holds that

K1 =X 1461
S T(K(M1) + Kk (Mz)).
Xl 1-G]

The quantityty |F(I — Fp)||[IM1]| + 12|l — R|||[M2]| plays an analogous role in the result for the norm of the
residual, and the tolerancesandt, should be chosen in a similar fashion to the above, e.g.ugira prescribed
common tolerance. Definitely, the maximum attainable accuracies dependefetrels of inexactness (measured
in terms ofT) in solving the inner linear systems either with the malfixor with the matrixMs.

In some applications one needs the maximum attainable @aogtw be proportional to the machine precision
u. Hence, it makes sense that we discuss the recurrence (Bstyaightforwardly applying the theory for the
recurrence (2.2) established in Section 2. In this mannercan derive the componentwise and the normwise
bounds for the errax ;1 — X and the residud — A%, ; of the computed solutior, ;1 of the linear system (1.1).

To this end, we recall that the matrit, defined in (3.5) and reformulated in (3.6), adopts the exeivt
expression

H =M, (M +M—AM L

Similar to the computing model described in (2.22), (2.28) €2.24), at thék + 1)-th step of the iteration scheme
(3.7) we assume that the computed solutipn; Ts obtained by the procedure

fk =b—AR+Ar, 2= H+AHK)F and X1 = R+ 2+ Ax,
with Xg a given initial guess, where

|Ar| < & (u) (bl +A[[%]), 8% < u(|Re| + |2]), (3.17)
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andAH® is a perturbation to the matrki, which is defined implicitly by
H+AH® = (My 4+ AMP) LMy 4+ M — A+ AMY) (Mg + AM) 2,
with AMYQ, AMék) andAM® being imposed to satisfy
AME| < TalMaf, 1AMEY] < ToMp| and M) < G(U) My + [Mg| + |A). (3.18)

Again, 11 andt, are two prescribed tolerances used to measure the acainaselving the inner linear systems
with respect to the matricéd; andM, respectively.

Again, we omit the superscripts of the perturbation masrsech ag&H ®), AM K andAMik), AMS‘), which are

used to label the iterate indices. Moreover, there existingsAG andAF, independent of the iterate indéx
such that

[l —(H+AH)A < |G+AG| and || —A(H+AH)|+u|H+AH|A| < |F +AF|.

Provided that the spectral ragii(|G + AG|) and p(|F 4+ AF|) are strictly less than 1, the maximum attainable
accuracies will be proportional to the roundoff uniand also independent of the parametgrandt, as

k
fiv1—X S S |GH+AG| | G(u)|H+AH||A] | |x|+ max % u max|%
s =5 3 G-+AGf | 0(u)H-+aH| A  + max %) +u maxi|

and

k
— AX < [ o -
oAl S 3 F+FF | ) AH-+8H)| 1+ 4| s ) + Al maxis|

As
IH+AH| < || —G—AG||A™Y| and |A(H+AH)| < || —F —AF|,

we can further obtain the bounds
k
21— X< S IGHAG| o) |l —G—AG|A LA max |% max |%
fa x5 3 [6+06] | o) 1A (-+ i ) + u mas |

and

k
b— A1 S S IF+AF| [O(u)|l — F —AF| ( |b| + |A] max & Al max |R|| -
Al £ 3 F 87T | 000 (101 A1 i ) +uial sl

These bounds are significantly better than the bounds wedisaeed for the recurrence defined in (3.1) and
(3.2). Although in practical situations it ig > ¢'(u) and1, > &'(u) that are used in the iteration scheme (3.7),
we will obtain very accurate approximate solutions aftéficgently many iterations.

For the normwise approach, replacing the componentwisedmun (3.17) and (3.18) by the normwise ones
[[Ar[] < & (u) (bl + AR, (1A% < u][%el| + [1Zl1)
and
[AMy]| < Ta[[Mafl,  [[AMz]| < T2[M2][,  [|AM]| < &(u) ([[M1]| + [[M2| + [|Al]),

respectively, we can analogously obtain the normwise bet@mrdthe erroixg, ; — x and the residud) — A%y, 1 as
follows:

k
~ o < i o ~ ~
1= S 3 1G-+AGI |2 1 = (6-+86) k(A I+ x| ) +u max |l
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and
k .
— AR < i _ N N
b A&Hn%éyF+AH[ﬁwwl<F+AH|Qm+nggymm)+wNmEymn.

Provided that|G + AG|| < 1 and||F + AF|| < 1, and assuming that the normwise growth factor

%]
6«= su {—
ozick L]
is not too large, the above normwise bounds can be furtherigied to

2 —X| _ 16 () a8
W ~?YiTjerag] (III (G+AG)||K(A)+1+9k>

and

1 (F +a8)| 1
e (1o (1 ey ) BN

Consequently, these bounds guarantee small normwise fibraved backward errors, respectively, under mild
conditions on the coefficient matrixas well as the splitting matricég;, N; andMa, N,.

In summary, if the iteration schemes (3.1)-(3.2) and (833%) are either componentwise or normwise forward
or backward stable, and if the splitting matridésandN, are as sparse and structured as the coefficient mfgtrix
then at thek-th iteration step of these two schemes computing the v@blog + b andNzX.1/> + b should be as
costly as computing the residudds- A% andb — Axc,1/2, respectively. So the iteration scheme (3.1)-(3.2) costs
about the same workloads as the iteration scheme (3.3)dB8ehch iteration step. Roughly speaking, provided
that the inner linear systems having the same coefficientieeatM; andM; are solved inexactly in accuracies
controlled by the same tolerancesandty, respectively, the iteration scheme (3.3)-(3.4) can atnahieve higher
computational efficiency than the iteration scheme (3312)(

Ib—ASea] S W)

4 Description of Implementations

In this section, we review the PMHSS and the HSS iteratiorhodg [9, 7] and clarify their implementation
settings. We remark that PMHSS and HSS are, respectivatytiical examples of the stationary single- and
two-step matrix splitting iteration methods for solvingtlarge sparse linear system (1.1); see also [12, 11, 6]
and the references therein. Besides, we describe two expetal examples where a complex symmetric and a
non-symmetric positive-definite linear systems arise.

The PMHSS iteration method is used to solve the linear sygteh), with its coefficient matrixd € C™" being
complex symmetric and given =W +iT, whereW, T € R™" are real, symmetric, and positive semidefinite
matrices with, at least, one of them being positive defirtitere and in the sequel, we use iy/—1 to denote the
imaginary unit. A specific form of this iteration method ivghn by setting the iteration parametetto be 1 and
choosing the preconditioning matrix to ¥ which has the following algorithmic description.

Method 4.1. (The PMHSS lIteration Method [7])
Let Xo€C" be an arbitrary initial guess. For k=0,12,... until the sequence of iterates
{XK}E’:OC(Cn converges, compute the next iterate Xcy1 according to the following procedure:
1+i . 1-i
(W+T)Xk+l = T(W—|T)Xk+ Tb
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The PMHSS iteration scheme is induced by the matrix spljtin= M — N, with
M=(1+i)W+T) and N=i(W—iT).

It alternatively admits the following equivalent form irres of the residual.

Method 4.2. (The PMHSS Iteration Method [7])
Let Xo€C" be an arbitrary initial guess. For k=0,12,... until the sequence of iterates
{XK}EZOC(C” converges, compute the next iterate Xcy1 according to the following procedure:

1—i

In fact, the PMHSS iteration method is a stationary singdg-gnatrix splitting iteration method. It con-
verges unconditionally to the unique solution of the complgmmetric linear system (1.1) for any initial guess if
null(W) nnull(T) = {0}. For distinction, we call Methods 4.1 and 4.2, respectivbly PMHSS iteration schemes
I and Il, or shortly, PMHSS-I and PMHSS-II, in the subsequdstussion.

In actual computations, we solve the linear sub-systemis meispect to the coefficient matridd + T itera-
tively by thepreconditioned conjugate gradie(RCG) method, with the incomplete Cholesky factorization [18]
preconditioner (MATLAB codé chol (sparse(-))).

The HSS iteration method is used to solve the linear systet) (dith its coefficient matrixA € C™" being
non-Hermitian and positive definite, i.e., its Hermitiamtp&’ (A) = %(A+ A*) is positive definite; see [9]. Denote
by Z(A) = %(A—A*) the skew-Hermitian part of the matr& Then it holds thaA = 57’ (A) + .“(A), and the
HSS iteration method can be algorithmically described 4svis.

Method 4.3. (The HSS Iteration Method [9])

Let Xo€C" be an arbitrary initial guess. For k=0,12,... until the sequence of iterates
{Xk}[f:OC(Cn converges, compute the next iterate Xcy1 according to the following procedure:
(al +%(A))Xk+1/2 == (al —y(A))Xk—f-b,
(al+ (A1 = (al = (A) X 12+b,

where O is a given positive constant.

The HSS iteration scheme is induced by the matrix splitdng M (a) — N(a), with

M(a) = oo (@l + A (A)(@l +.7(A) and N(@)= oo (al — 2(A))(al — 7 (A))

It alternatively admits the following equivalent form irres of the residual.

Method 4.4. (The HSS Iteration Method [9])
Let X€C" be an arbitrary initial guess. For k=0,1,2... until the sequence of iterates
{Xk}f:OC(Cn converges, compute the next iterate Xy 1 according to the following procedure:

{Xk+1/2 = X+ (al+2(A) Hb—Ax),
X1 = Xk+1/2+(a|+<5ﬂ(A))_l(b—AXk+1/2),

where O is a given positive constant.

In fact, the HSS iteration method is a stationary two-stepisgplitting iteration method induced by the matrix
splittings

M, = CI|—}-<%”(A)7 N, = CI|—,§”(A)7
M> al+<5’(A), N, al—%ﬂ(A).
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It converges unconditionally to the unique solution of tlom+Hermitian positive definite linear system (1.1) for
any initial guess. For distinction, we call Methods 4.3 antl despectively, the HSS iteration schemes | and Il, or
shortly, HSS-I and HSS-II, in the subsequent discussion.

In actual computations, the iteration parametés chosen to be the experimentally optimal one that minimize
the number of iteration steps of the HSS iteration method. s@ee the linear sub-systems with respect to the
coefficient matricesr| + .52°(A) andal + . (A) iteratively by the PCG or the PCGNIgréconditioned conjugate
gradient for normal equationmethods, with the incomplete Cholesky (MATLAB codlehol (sparse(-))) or
the incomplete LU (MATLAB code lu(sparse(-))) factorization preconditioners [18].

We describe in detail two experimental examples in the Valg.

Example 4.1. (See [1, 6]) The linear system (1.1) is of the form
<K+3_n\/él>+i<K+3+n\/§l>]x:b, 4.1)

wheren is the time step-size and K is the five-point centered diffeyenatrix approximating the negative Lapla-
cian operator L= — (uxx + Uyy + Uzz) with homogeneous Dirichlet boundary conditions, on a unifmesh in the
unit cubeQ = [0, 1] x [0,1] x [0, 1] with the mesh-size h ﬁ The matrix Ke R™" possesses the tensor-product
form K=Bn® 1 @1 +1®Bn® | +1®1 ® B, with By, = h=2 - tridiag(— 1,2, —1) € R™™. Hence, K is an x n
block-pentadiagonal matrix, with-8 m®. We take

3—-3 3+3
n n

W=K+ | and T=K+

I

and the right-hand side vector b with its jth enfby; being given by

b= -2 1o n

n(i+1>2
Furthermore, we normalize coefficient matrix and right-taide by multiplying both by?h

In our tests we take = h. For more details about the practical backgrounds of tlaisscof problems, we refer
to [1, 6] and the references therein.

Example 4.2. (See [9, 8]) Consider the linear system (1.1), for whica R™" is the upwind difference matrix of
the three-dimensional convection-diffusion equation

q-expx+y+2)

— (Ug+ Uy + U
(Ux+ Uyy + Uzz) + X+yTz

(XU +yUy +2W) = f(x,Y,2)

on the unit cube& = [0,1] x [0,1] x [0,1] with the homogeneous Dirichlet boundary conditions. Thee-sizes
along all x, y and z directions are the same, i.ex ﬁ% and the right-hand side vector b is taken to be Be,
with e R" being the vector of all entries equal 10 We denote by Re gh the mesh Reynolds number.

All iteration processes are started from zero and terméhatee the Euclidean norms of the current residuals
are reduced by a factor of $G6rom those of the initial residuals. In addition, all codes aun in MATLAB
(version R2013a) in double precision and all experimergsparformed on a personal computer with 2.66GHz
central processing unit (Intel(R) Core(TM)2 Duo CPU E672000G memory and Windows operating system.

5 Numerical Results

By implementing the two equivalent schemes of the PMHS &titen method used to solve Example 4.1 and those
of the HSS iteration method used to solve Example 4.2, we shatthe residual-update schemes, i.e., PMHSS-II
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Table 1: Numerical Results of PMHSS Iteration Schemes fanigXe 4.1 at I'T= 50

T
m Method Index 107 105 10 15-10 R
PMHSS-| CPU 2.69 1.73 3.02 4.69 6.94
32 BERR | 1.06E-04| 1.72E-06| 1.34E-08| 1.17E-10| 1.49E-12
PMHSS-I] CPU 10.35 10.88 11.57 12.76 15.92
BERR | 5.47E-16| 5.45E-16| 5.48E-16| 5.45E-16| 5.47E-16
PMHSS-| CPU 11.01 24.38 48.67 72.25 106.50
64 BERR | 1.08E-04| 1.83E-06| 1.41E-08| 1.32E-10| 1.08E-12
PMHSS-I] CPU 205.12 214.01 236.21 256.48 286.18
BERR | 5.77E-16| 5.64E-16| 5.62E-16| 5.63E-16| 5.61E-16

19

and HSS-II, are always significantly more stable than theathisplitting schemes, i.e., PMHSS-I and HSS-I, for
large spectrums of the stopping tolerance(&r 11 andty) of the inner iteration method(s). To this end, we report
numerical results with respect to the number of iterati@pst(denoted adT "), the computing time in seconds
(denoted asCPU"), and the norm of the backward error (denoted BERR") for these iteration schemes. Here
BERR is defined as

[|b— Ax||
BERR= —— "I
[[bI] -+ [IAT][|xll

with k being the iterate index.

At IT =50, in Table 1 we list CPU and BERR for PMHSS-I and PMHSS-II whieey are used to solve
Example 4.1 with respect to different problem sizes andavdrstopping tolerances. We observe that for each
fixed m, the CPU for each scheme increases significantly when teeatater becomes smaller; and for fixed
andrt, PMHSS-I always costs much less CPU than PMHSS-II. In Figg@rand 2 we depict the curves of BERR
versus IT whem = 32 and 64, with respect to variant stopping tolerances foHB®-| and PMHSS-II when they
are used to solve Example 4.1. From Table 1 and Figures 1-Zaeree that for fixedn the norm of backward
error of PMHSS-I is of the same order of magnituderabut that of PMHSS-II is always of the ordéi(u) of
the machine precision by no matter whether is large or small. Hence, in actual computations PMHSS-II is
always backward stable independent of the toleranteit PMHSS-I may be backward stable only for thoss
about the orde¢’(u) of magnitude. As a result, the two equivalent implementetiof the exact PMHSS iteration
method have about the same stability property and conveegaehavior.

AtIT = 250, in Table 2 we list CPU and BERR for HSS-I and HSS-II wheaytare used to solve Example 4.2
with respect tom = 64, Re= 10, and variant stopping tolerances. We observe that the foPBach scheme
increases significantly when either of the toleranceand 1, becomes smaller; and for fixed and 1, HSS-
| always costs much less CPU than HSS-II. Moreover, the ndrivaokward error of HSS-I is of an order of
magnitude likeo’'(max{11, 1o} ), but that of HSS-II is always of the ordér(u) of the machine precision by no
matter whether; or 15 is large or small; see Figure 3 in whiche 11 = 17,. Hence, in actual computations HSS-II
is always backward stable independent of the toleramgcesd 1,, but HSS-I may be backward stable only for
thoser; andt, of about the orde’(u) of magnitude. As a result, the two equivalent implementetiof the exact
HSS iteration method have about the same stability proerdyconvergence behavior.

With regard to Tables 1 and 2, one reason for the CPUs of PMHB% HSS-I being much less than the
CPUs of PMHSS-II and HSS-11 is that the stopping criteriohthe inner iteration methods adopted in PMHSS-I
and HSS-1 are much more easily achievable than those adopRMHSS-11 and HSS-I1, respectively, especially
when the iterates are approaching to the exact solutioneafyktem of linear equations (1.1). Admittedly, as the
inexactly computed solutions have very different accurt®yCPUs here do not reflect the computing efficiency of
both iteration schemes, and they only show the overall @atlerage) computational costs of the inner iterations,
or in other words, the average numbers of inner iteratiopsste
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Table 2: Numerical Results of HSS for Example 4.2 with= 64 and Re= 10 at IT= 250

2

1 Method | Index 102 105 108 R R R
Hss. | CPU [ 25017 | 339.56 | 423.30 | 510.85 | 580.82 | 583.76
104 BERR | 3.01E-04| 8.66E-05| 1.23E-04| 1.21E-04| 1.21E-04| 1.21E-04
Hss-| | CPU | 389.48 | 431.18 | 495.28 | 539.88 | 621.17 | 703.32
BERR | 7.33E-17| 7.46E-17| 7.34E-17| 7.34E-17| 7.48E-17| 7.41E-17
Hss. | CPU | 25396 | 34561 | 426.30 | 519.16 | 584.64 | 585.40
106 BERR | 2.52E-05| 1.56E-06| 2.51E-06] 1.09E-06] 1.09E-06| 1.09E-06
Hss-il | CPU | 402.32 | 442.74 | 502.64 | 559.40 | 626.10 [ 714.77
BERR | 7.44E-17| 7.42E-17| 7.46E-17| 7.44E-17| 7.44E-17]| 7.39E-17
Hss. | CPU [ 27211 | 35252 | 449.93 | 524.44 | 59751 | 622.80
108 BERR | 2.50E-05| 1.54E-07| 9.74E-09| 7.98E-09| 1.30E-08| 1.30E-08
Hss.y | CPU | 455.02 | 480.71 | 513.60 | 574.09 | 641.13 | 731.26
BERR | 7.47E-17| 7.47E-17| 7.34E-17| 7.41E-17| 7.46E-17]| 7.35E-17
Hss. | CPU [ 30495 | 391.21 | 466.61 | 578.35 | 697.57 | 94122
10°10 BERR | 2.50E-05| 1.48E-07| 1.94E-09| 3.64E-10| 2.20E-10| 2.20E-10
Hss. | CPU | 437.73 | 482.88 | 53562 | 585.11 | 655.26 | 739.58
BERR | 7.46E-17| 7.52E-17| 7.53E-17| 7.48E-17| 7.34E-17| 7.45E-17
Hss. | CPU | 50851 | 614.75 | 73535 | 824.93 | 903.22 | 985.34
1012 BERR | 2.50E-05| 1.48E-07| 1.90E-09| 2.48E-11| 3.78E-12| 3.78E-12
Hss-l | CPU | 459.49 | 53242 | 579.38 | 609.75 | 683.28 | 768.80
BERR | 7.61E-17| 7.44E-17| 7.50E-17| 7.47E-17| 7.49E-17]| 7.19E-17
Hss. | CPU [ 52055 | 668.16 | 764.35 | 756.78 | 624.93 | 628.16
1014 BERR | 2.50E-05| 1.48E-07| 1.90E-09| 2.48E-11| 3.78E-12| 3.78E-12
Hss.y | CPU | 481.66 | 521.08 | 589.94 | 642.01 | 713.43 | 806.06
BERR | 7.49E-17| 7.51E-17| 7.40E-17| 7.46E-17| 7.42E-17]| 7.45E-17
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Figure 1: Pictures of BERR versus IT for PMHSS whan= 32 with PMHSS-I (left) and PMHSS-II (r|ght)
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6 Concluding Remarks

Stationary matrix splitting iteration methods for solvilagge sparse systems of linear equations have two typical
equivalent reformulations: the residual-update schendetlaa direct-splitting scheme. Both theoretical analyses
and numerical experiments have shown that the former isyalwanificantly more stable than the later for a
large spectrum of the stopping tolerance of the inner iimnanethod. Moreover, for both reformulations, inexact
solutions of inner linear systems associated with the maplittings may considerably influence the convergence
and the accuracy of the approximate solutions computedite fimecision arithmetic, a finer tolerance often costs
more computing time, and their exact implementations hdiathe same stability property and convergence
behavior. These conclusions hold equally true for bothlsirand two-step matrix splitting iteration methods.
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