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Introduction

We address the question of difference between Krylov subspaces generated by the CG method in finite
precision arithmetic and their exact arithmetic counterparts. Since we study the behaviour of CG in
practical computations, we concentrate on situation with significant delay of convergence. We observe
that apart from the delay the computed Krylov subspaces do not depart much from their exact arithmetic
counterparts.

Krylov subspaces in practical computations

The need of computing the basis of the Krylov subspace

Kl(B , v) = span{v ,Bv , . . . ,B l−1v}
is in the nutshell of CG and other Krylov subspace methods. However, due to rounding errors, the subspace
spanned by the practically computed basis may differ and the following questions arise:

I What is the difference between the computed Krylov subspace Kl(B , v) and its exact arithmetic
counterpart Kl(B , v) ?

I Can we find perturbations ∆B , δv such that Kl(B + ∆B , v + δv) = Kl(B , v) ?

I How much are the Krylov subspaces Kl(B + ∆B , v + δv) sensitive to general small perturbations?

Results in literature, e.g., [1, 2, 3], rely on the assumption of full dimensionality of studied (computed
or perturbed) Krylov subspaces.

The CG method in practical computations

The CG method is the method of choice for solving linear systems

Ax = b, A ∈ FN×N HPD, b ∈ FN , F is R or C.

I CG is a projection method which minimizes the energy norm of the error

xl ∈ x0 +Kl(A, r0), rl ⊥ Kl(A, r0); ‖x − xl‖A = min {‖x − y‖A : y ∈ x0 +Kl(A, r0)} .
I CG is computationally based on short recurrences.

Delay of convergence & rank deficiency
Using short recurrences in practical computation leads to the loss of global orthogonality of the
computed residuals and even to the loss of their linear independence. Consequently, the computed Krylov
subspace spanned by these vectors can be rank-deficient which causes significant delay of
convergence.
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Idea of shift

Taking into the account the phenomenon of delay of convergence, we should compare different
iterations when comparing CG computations in finite precision and exact arithmetic. We relate:

k-th iteration of FP CG ⇐⇒ l -th iteration of exact CG where

k − l corresponds to delay of convergence or rank-deficiency of computed Krylov subspace.
We want to study:

‖x − xk‖A × ‖x − xl‖A
xk × xl

Kk(A, r0) × Kl(A, r0).

Correspondence among computed and exact approximation vectors

We see that

‖x̄k−xl‖A
‖x−xl‖A

� 1,

i.e., the distance between the exact and shifted FP
approximations is small in comparison with the actual
size of error.
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Figure : Trajectory of approximations x̄k generated by FP CG computations follows closely the trajectory of the exact CG
approximations xl with a delay given by the rank-deficiency of the computed Krylov subspace.

Correspondence between computed and exact Krylov subspaces

The distance between subspaces is measured using principal angles ϑj and vectors pj , qj defined as

ϑj = min
p∈Fj
‖p‖=1

min
q∈Gj
‖q‖=1

arccos ( p∗q ) ≡ arccos ( pj
∗qj ) where Fj ≡ Kk(A, r0) ∩

{
p1, . . . , pj−1

}⊥
,

Gj ≡ Kl(A, r0) ∩
{
q1, . . . , qj−1

}⊥
.

We compute principal angles and vectors via the computation of the SVD decomposition of the matrix U∗l Vl
U∗l Vl = FΣG∗,

where Ul is the orthogonal basis of the l -dimensional restriction of Kk(A, r0) and Vl is an orthogonal basis
of Kl(A, r0). It holds that:

[p1, . . . , pl ] ≡ P = UlF , pj = Ul fj ,

[q1, . . . , ql ] ≡ Q = VlG , qj = Vlgj ,

diag(cos(ϑ1), . . . , cos(ϑl)) ≡ Σ.
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Figure : Left: In this numerical experiment, the largest canonical angle is ≈ 1o and thus Krylov subspaces Kl(A, r0) and
Kk(A, r0) are nearly the same. Right: Things can be more complicated, as illustrated on experiment with data Bus 494 from the
MatrixMarket database. The departure of subspaces is, however, still only in few directions.

Study of departure of Krylov subspaces

Influence of clustered eigenvalues
We have observed that the quality of closeness of generated Krylov subspaces depends on the possible
presence of clustered eigenvalues. The tighter cluster is, the more severe is departure of subspaces.
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Figure : Illustration of the influence of clustered eigenvalues. We plot the largest principal angles for two different settings. Five
largest eigenvalues are clustered in the interval of length ∆ = 10−8 (left) and ∆ = 10−12 (right).

Similar phenomenon of the loss and recapture of correlation between Arnoldi vectors computed by two
implementations of the Arnoldi algorithm in finite precision arithmetic was observed in [4].

Concluding remarks

I The trajectories of computed approximations are enclosed in a shrinking “cone”.

I Krylov subspaces are in general sensitive to small perturbations of the matrix A. The observed “stability”
(or inertia) of computed Krylov subspace represents phenomenon which needs further investigation.

I There is principle difference in analysis between short and long recurrences. Using short
recurrences we can not guarantee that the computed basis is well conditioned and that the
computed subspaces have full dimension.
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