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Abstract

For a real symmetric nonsingular matrix B ∈ Rm,m and for a full column rank matrix A ∈ Rm,n

(m ≥ n) we look for the decomposition A = QR, where the columns of Q ∈ Rm,n are mutually
orthogonal with respect to the bilinear form induced by the matrix B so that QTBQ = Ω =
diag(±1) and where R ∈ Rn,n is upper triangular with positive diagonal elements. Such problems
appear explicitly or implicitly in many applications such as eigenvalue problems, matrix pencils
and structure-preserving algorithms, interior-point methods or indefinite least squares problems.
It is clear that for B = I or B = −I we get the standard QR decomposition of the matrix A. If
B is positive and diagonal then the problem is equivalent to the standard decomposition of the
row-scaled matrix diag1/2(B)A. For a general but still symmetric positive definite B, the factors
can be obtained from the QR factorization in the form B1/2A = (B1/2Q)R. The indefinite case of
B ∈ diag(±1) has been studied extensively by several authors. It appears that under assumption
on nonzero principal minors of ATBA each nonsingular square A can be decomposed into a product
A = QR with QTBQ ∈ diag(±1) and R being upper triangular. These concepts can be extended
also to the case of a full column rank A and a general indefinite (but nonsingular) matrix B.

Although all orthogonalization schemes are mathematically equivalent, their numerical behavior
can be significantly different. The numerical behavior of orthogonalization techniques with the
standard inner product B = I has been studied extensively over last several decades including the
Householder, Givens QR and modified Gram-Schmidt. The classical Gram-Schmidt (CGS) and
its reorthogonalized version have been studied much later in [1, 4, 5]. It is also known that the
weighted Gram-Schmidt with diagonal B is numerically similar to the standard process applied
to the row-scaled matrix diag1/2(B)A. Several orthogonalization schemes with a non-standard
inner product have been studied including the analysis of the effect of conditioning of B on the
factorization error and on the loss of B-orthogonality between the computed vectors [2].

In this contribution we consider the case of symmetric indefinite B and assume that ATBA is
strongly nonsingular (i.e. that each principal submatrix AT

j BAj is nonsingular for j = 1, . . . , n,
where Aj denotes the matrix with the first j columns of A). Then the Cholesky-like decomposition
of indefinite ATBA exists and the triangular factor R can be recovered from ATBA = RTΩR.
We first analyze the conditioning of factors Q and R. It is clear that if B is positive definite
then ‖R‖ = ‖B1/2A‖, ‖R−1‖ = 1/σmin(B1/2A) and ‖Q‖ ≤ ‖B−1‖1/2 , σmin(Q) ≥ 1/‖B‖1/2.
Therefore κ(R) = κ(B1/2A) = κ1/2(ATBA) and κ(Q) ≤ κ1/2(B). However, for B indefinite we
have only ‖ATBA‖ ≤ ‖Ω‖‖R‖2 and ‖(ATBA)−1‖ ≤ ‖Ω−1‖‖R−1‖2 and so the square root of the
condition number of ATBA is just a lower bound for the condition number of the factor R, i.e.
κ1/2(ATBA) ≤ κ(R). The upper bound for κ(R) seems more difficult to obtain. One must look at
its principal submatrices Rj and derive bounds for the norm of their inverses ‖R−1

j ‖ considering

(RT
j Rj)

−1 =

(
(RT

j−1Rj−1)−1 0

0 0

)
+ ωj

[
(AT

j BAj)
−1 −

(
(AT

j−1BAj−1)−1 0

0 0

)]
.

This identity provides the basic insight into relation between the minimum singular value of the
factor R and the minimum singular values of some principal submatrices of AT

j BAj . Observe that

its recursive use leads to the expansion of the matrix (RTR)−1 in terms of (ATBA)−1 and in terms
of only those inverses of principal submatrices (AT

j BAj)
−1 where there is a change of the sign in
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the factor Ω = diag(ω1, . . . , ωn), i.e. for such j = 1, . . . , n − 1 where ωj+1 6= ωj . It follows then
that |ωj+1 − ωj | = 2 and therefore we have the bound

‖R−1‖2 ≤ ‖(ATBA)−1‖+ 2
∑

j; ωj+1 6=ωj

‖(AT
j BAj)

−1‖. (1)

The norm of the factor R can be either bounded as ‖R‖ ≤ ‖ATBA‖‖R−T ‖ or one can consider sim-
ilar identity for RTR and get the bound for ‖R‖ in terms of the Schur complements corresponding
only to those principal submatrices AT

j BAj (subject to ATBA) where ωj+1 6= ωj , i.e.

‖R‖2 ≤ ‖ATBA‖+ 2
∑

j; ωj+1 6=ωj

‖(ATBA)\(AT
j BAj)‖. (2)

The bounds (1) and (2) can be reformulated also for quasi-definite matrices ATBA, where the
factor Ω has a particular structure Ω = diag(I;−I) with appropriate dimensions. The only nonzero
term in the sum over principal submatrices corresponds to the biggest positive definite principal
submatrix of ATBA. The singular values of the factor Q can be bounded from Q = AR−1.

Here we analyze two types of important schemes used for orthogonalization with respect to the
bilinear form induced by B. We give the worst-case bounds for quantities computed in finite preci-
sion arithmetic and formulate our results on the loss of orthogonality and on the factorization error
(measured by ‖Q̄TBQ̄− I‖ and ‖A− Q̄R̄‖) in terms of quantities proportional to the roundoff unit
u, in terms of ‖A‖ and ‖B‖ and in terms of the extremal singular values of factors Q̄ and R̄. Based
on previous discussion the latter depend on the extremal singular values of the matrix ATBA and
principal submatrices AT

j BAj with the change of the sign ω̄j+1 6= ω̄j during the orthogonalization.
First we analyze the QR implementation based on the Cholesky-like decomposition of indefinite
ATBA. We show that assuming O(u)κ(ATBA)‖A‖2‖B‖maxj, ω̄j+1 6=ω̄j

‖(AT
j BAj)

−1‖ < 1 such de-

composition runs to completion and the computed factors R̄ and Ω̄ satisfy ATBA+ ∆B = R̄T Ω̄R̄
with ‖∆B‖ ≤ O(u)[‖R̄‖2 + ‖B‖‖A‖2]. For the computed orthogonal factor Q̄ it follows then that
‖Q̄TBQ̄ − Ω̄‖ ≤ O(u)κ(R̄)

[
κ(R̄) + 2‖BQ̄‖‖Q̄‖

]
. The accuracy of these factors can be improved

by one step of iterative refinement when we apply the same decomposition to the actual Q̄TAQ̄
and get the bound ‖Q̄TBQ̄ − Ω̄‖ ≤ O(u)‖B‖‖Q̄‖2. We consider also the B-CGS algorithm and
its version with reorthogonalization and show that their behavior is similar to Cholesky-like QR
decomposition and its variant with refinement, respectively. The details can be found in [3].
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