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1 Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
2 National Institute of Mental Health, Klecany, Czech Republic

3 Institute for Clinical and Experimental Medicine, Prague, Czech Republic
This study was supported by the Czech Science Foundation project No. 13-23940S, the Czech
Health Research Council project NV15-29835A and by the project Nr. LO1611 with a financial

support from the MEYS under the NPU I program.

Motivation

The small-world property of brain networks has been extensively
discussed, however even random timeseries give rise to
small-world functionl connectivity graphs. So is this small-world
property of fMRI FC just a methodological artifact?

Introduction

Brain can be characterized by using graph theory [Bullmore].
Small-world property [Watts], defined by short paths together with high
clustering of the network, is one of the most discussed and studied [Bassett].
Representative network commonly given by functional connectivity (FC).
Most used FC measure is correlation coefficient, especially when the data
can be deemed close to Gaussian [Hlinka, 2011]. FC matrices provide
upwardly biased estimates of small-world, leading even to small world
properties of connectivity graphs estimated from independent or randomly
connected dynamical systems [Hlinka, 2012; Zalesky; Bialonski].

Figure 1: Example binary functional connectivity matrix (right) generated from random
structural connectivity matrix (left) by thresholding the correlation matrix of VAR-model-based
time series (center). Note that the FC matrix shows a specific structure for random input.

To what extent may this bias explain the observed small-world
property in resting state fMRI functional connectivity graphs?

Data

I 10 minutes, 240 volumes of resting state fMRI (BOLD)
I 84 (48 males, mean age ± SD: 30.83 ± 8.48) healthy volunteers
I 3T Siemens Trio scanner (GE-EPI, TR/TE=2500/30 ms, voxel=3x3x3mm)
I A 3D high-resolution T1-weighted image was used for anatomical reference.
I slice-timing correction, motion correction, spatial normalization to MNI
I 90 parcels from the Automated Anatomical Labeling (AAL) atlas
I orthogonalized wrt motion parameters, white matter and CSF signal
I linear detrending, band-pass filtering (Butterworth filter 0.01 - 0.08 Hz)
I FC matrix computed by correlation and binarized to 20 percent density

Methods

I The average path length and the clustering coefficient are defined as:
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where ai ,j denotes the link between nodes i , j , ci the local clustering
coefficient and di ,j the length of shortest path among nodes i , j .

I Small-world property is quantified by small-world index [Humphries]
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are relative average path length and clustering coefficient wrt random graph.

Methods II: comparison of data and randomly connected process

I Small-world indices were computed in the same way for data and a
’scrambled interaction’ time series. This was modeled by fitting an vector
autoregressive (VAR) process of order 1 to the BOLD time series:

Xt = c + AXt−1 + et, (1)

(where c is a N × 1 vector of constants, A is a N × N matrix and et is a
N × 1 vector of error terms) and subsequently randomly scrambling A.

I To control for the effects of approximation by a VAR process, a realization
of the fitted VAR model with scrambling omitted was also analyzed.

Results

Small-world properties observed: mean small-world index = 2.33
For the linear VAR model: mean small-world index = 2.32
For randomly linked VAR model: mean small-world index = 2.18
The small-world property is driven by the clustering coefficient
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Figure 2: Left: small-world index (median, quartiles, extremes, outliers) for data, VAR model
and randomized VAR model. Middle: relative clustering. Right: relative mean path length.

The difference between the real and modeled data is almost negligible
(p > 0.05). The difference between the real and scrambled interaction data
is also quite small, albeit statistically significant (p < 0.05).
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Figure 3: Example FC matrices. Top: raw. Bottom: thresholded to density 0.2.

Results generalize across atlases, not fully to other FC measures!
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Figure 4: Left: small-world indices for alternative atlas (Craddock atlas with 200 ROIs);
Middle: FC quantified by absolute correlation; Right: FC quantified by mutual information.

Discussion and conclusions

I The small-world properties of fMRI FC graph is virtually
reproduced by a matching randomly connected multivariate
autoregressive process [Hlinka, 2017].
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