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PAC model

Nature fixed set X and concept class C C 2X
define probability P over X and choose target concept ¢ € C
X.P {e ¢
Y
 — , N S
Process Ours Wisdom
(learning algorithm)
Xj do something Xj
if asked ask Rrocess ifx;c ¢
_ or Wisdom return 1
produce. Xi €~X Oor1 | ifnecessary 0or 1 else
by density P when finished return O
select he C
h should be
"resemble" to C
e/ N 4 e/

hypoth!sis h~¢
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PAC model

" h should be resemble to "

Definition
@ o (he)2P(ah) (= (e-h)u(h-e))
@ h is consistent if and only if {X;,...,xm} N (€A h) =0
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PAC model

Definition (sample space)

= def

Let x = {xq,....Xm}, x; € X, ie{1,...,m},Z e {-1,+1}7
and let ¢ € X. Then the ordered tuple

(%:2)
isa m-SAMPLE OF CONCEPT c if and only if
(Vie{l,....m})((xiec)& (Zi=1)).

For concept class C define SAMPLE SPACE OF CONCEPT

CLASS as
o def - — 2\ . i _
S & ,g1 {EGUC{(X,Z) ‘(x,z) is a m-sample of concept c}}
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PAC model Sample complexity PAC example

Definition ((e, 6)-learning algorithm)

@ (¢,9)-LEARNING ALGORITHM is each mapping A* Sc—C
such thatforall¢ € C,¢,6 € (0,1) and P on X, the
probability of the set

{; ‘ (}, E) is m-sample of ¢ and e (E,Av* ((}, 2))) > e}

is smaller than the number §.

@ If such a learning algorithm exists we say that C Is
UNIFORMLY LEARNABLE .
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PAC model Sample complexity PAC example

Let us assume that C is a concept class over finite set X and
H = C. Then, for each learning algorithm A* requiring

(2)

queries and producing for the given concept ¢ € C a consistent
hypothesis it holds that

Prob; (e»,s (E,Av* ((;, 2’))) > e) < 4.
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PAC model Sample complexity PAC example

For any arbitrary R C 2X and for any arbitrary probability
density P defined on X and for an arbitrary € > 0 let us

define R5 = {F € R|Prob, (F) > ¢ }. Then, we wil call

Tf,5 C X e-TRANSVERSAL R just if

(VF € Rﬁye) (7 nTs, # (b)

Example
X =(0,1)", P uniform on X,R {ch\bisabaII}, e=1.

Then T = {ke|k =0, "isa [z £ (Ve -transversal of R.
€ r(g+1)2n

2 |
1
I
1
1
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Sample complexity

...if hypotheses h produced by an algoritm is consistent and
has ez (h,C) > ¢, then {x;, ..., Xn} can’t be e-transversal of the

systemRE {hAclheH} ...
Definition
Foreach m>1,e¢ > 0 let

Qm. = {} e Xm ‘; do not form e-transversal of R}

and (assume that x, ¥ € X™)
zne fxyex?m|(3F e Ry, ) (xnF=vand |y n7| = ) }.

... the probability of the set Qn,. is a probability of producing
consistent hypothesis with error e (h,¢) > ¢ ...
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PAC model Sample complexity PAC example

@ Theclass H is well-behaved if the sets Qn . and J?™ are
measurable for any probability P, anym>1,¢>0,and
any system of sets R= {hA¢|he H}, where € isan
arbitrary Borelian set.

@ TheclassH c 2X is universally separable, if there exists a
countable subset T of the class H such that for all he H
there exists a sequence {h;}{° of sets from T such that

(Vx € X) (3n>1) ((Vi > n) (x € h; ifand only if x € h)).

If H is universally separable, then H is well-behaved.
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Sample complexity

Lemma

Let R # 0 be a concept class and P be probability on X for
which Qm . and J2™ are measurable for allm > 1, e > 0. Then
for eache > 0 and m > 2

Probsy, (Qm.) < 2Probz,, (J2™) < 2Mg (2m)2-%.

Lemma

Letm>1,ec X,Hc2XandRE [hAc|heH}. Then
Mg (m) =Ny (m) .

Lemma
Letd = VCyim (H) € N, €,6 € (0,1), T £ 2My (2m)2- 2. Then

4 2\ 8d 12.611
m > max ¢ —log, | = ), —log, =[<).
€ 1) € €
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Sample complexity

Concept class C is called nontrivial iff
(351,(_}‘2 € C) ((_')1 #+ ¢ and (&1 NCy #PorcyUcs 75)_()) .

Concept class is called trivial in other cases.

X-— {&1 U 52}

To— Ty To—Cy

51 062

Two cases of minimal content of nontrivial concept class.
(colored sets are nonempty)
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Sample complexity

Theorem (main result of PAC theory)

Let C be a nontrivial, well-behaved class. Then:
Q@ /fvCym (C) =d < +o0. Then

Q@ forany0<e< % there is no (e, 0)-learning algorithm with
number of queries less than

max <1€€In <;>,d(1 —2(e(1 5)+5))> )

@ for arbitrary 0 < e < 1, any learning algorithm using at least

max (A'Iog2 <2>1sdlog2 <12'611>> (2
€ ) € €

queries and returning a consistent hypothesis is an
(e, 0)-learning algorithm.

@ C is uniformly learnable if and only if VCgjy, (C) < +o0.
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Sample complexity

Sketch of the proof:

Q@ © o “<In(l): (c&c) Any nontrivial concept class can be
reduced to one of the cases discussed above. For uniform
probability we get a contradiction.

@ d(1—2(e(1—9)+)): (c&c) Reduce X to d-element

subset with uniform probability. Then use the "matrix"

z_hdﬁfe,,(c h) to show, that m > d (1 — 2 (e (1 — &) + J))

imply that (Hh*) contradicts (e, §)-property ... "broadly
speaking".
@ See previous slides.
© o < (construction) Use Zermelo’s well-ordering theorem to
well-order H . Let algorithm get m-sample of ¢ and return
the first hypothesis consistent with ¢ . The statemet follows
from 1)-2).

e = (by contradiction) For any d € N we carry out steps
1)-1)-(second term). Choose (e, d) such that
(1—-2(e(1—0)+9)) > 0. Hence mcan't be
upper-bounded.
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PAC model Sample complexity PAC example

Definition (discrete delta rule)
Let (X1,¥1) ..., (X:, y:) be a given sequence of tuples in
R x {—1,+1}, t > 1. Further, let vector’s sequence {w;}$°
satisfy the following recursive formulas
Q putw; £0, k=1
Q letk=k+1andJ= {je{1,....t} |sgn ((Wk |X;)) # y; }
Q if J =0 put Wy,1 = Wy and STOP,
@ else let jx € J be arbitrary. Then put
|’TIKJH 4 Wk + y/’k)?/'k
and REPEAT step 2).
Then we say that {w;}$° is DELTA SEQUENCE of
(i17y1) poacy (217.}/1‘)-
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PAC model Sample complexity PAC example

Theorem (delta rule convergence)

Let {w;}3° is a delta sequence and let there exists a vector W
such that for all indexes ic{1,...,t} holds

sgn <<VAT/ \)‘(’,>> = y;. Further let
@ f grax {|%I°} ana g% gin, 1 [{W]%)]}>o.

Then there exists an natural number z > 0 satisfying
W, 1 = W and z can be estimated as

]

L
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PAC example

Theorem (delta rule complexity)

There exists a linearly separable dichotomy of the {—1,+1}"
such that any integer linear separator (vT/, t) of this dichotomy
satisfies estimation

TZ <Z‘Wk‘+|t|
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PAC model Sample complexity PAC example

Definition (Mangasarian LP)

Let A< {&,...,4} and BE {51,...,5,-} be a finite subsets
of the R". Then MANGASARIAN LINEAR PROBLEM is defined
as the problem find vectors y c R/, Zc R/, wc R"and t ¢ R

that minimizes ,
i J
D Vot %
a=1 B=1

subject to
Vot (Wwld,)—t > 1 for ac{l,...,i}
zg—<w 5/3>+t > 1 for Be{l,....j}
Y. > 0 for ace{l,...,i}
Z; > 0 for ge{l1,...,j}.
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PAC model Sample complexity PAC example

LetA= (&,,...,4) and BE {51 el 5,-} be a finite subsets
ofthe R" . Then
@ There exists a linear separator of the sets A and B if and
only if the optimal value of the corresponding Mangasarian
LP is zero.
@ If the optimal value of the corresponding Mangasarian LP
is zero and (y*, 2", w", t*) is optimal solution, than (w", t*)
is linear separator of the sets A and B.
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PAO
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The necessary condition on consistency of hypotheses
produced is unsatisfied, PAC model isn’t applicable. We have to
use

Probably Approximately Optimal (PAO) model

Franti$ek Hakl ICS AS CR

PAC learning model



Franti$ek Hakl ICS AS CR

PAC learning model



	PAC model
	Sample complexity
	PAC example
	PAO
	PAC

