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Department of Machine Learning

research in the area of mathematical foundations of
computational models and their learning

development of theory-based data-dependent architectures
and algorithms, analysis of their efficiency and robustness

application to medical, chemical, physical and environmental
data

gradual and post-gradual education

ml.cs.cas.cz
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... major research activities in more detail ...

Capabilities and limitations of deep and shallow networks —
estimates of model complexity of feedforward networks.
When and why are deep networks better than shallow ones?

Kernel methods — theoretical analysis of properties of
convolutional kernel and radial networks in shallow and deep
architectures

Automatic design of deep architectures — investigation of
vulnerability of machine learning models to adversarial
images

Reliability of supervised learning — probabilistic evaluation of
classification reliability

Robustness to outliers — sensitivity of standard machine
learning methods (perceptron neural networks, SVM) to data
contamination (outliers, severe noise) in regression and
classification

Fast and efficient classifiers — design of efficient classifier for
data generated with high-frequency (GHz)
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Application
of neural networks with schwitching units (NNSU)
in HEP data separation.
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Neural nets with switching units

(e

® switching units:
Jance’y algorithm,
predefined number
of clusters

e clusters of data are
propagated into
neural units

® neural units: linear,
quadratic regression,
probit, logit
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NNSU architecture

0
NLSIDMN

Block 1

Id: 12
NSU [NLSIDMN]

Neurons: 2
Id: 12.0 Id: 12.1
NLSIDMN NLSIDMN

Id: 13
NSU [NLSIDMN]
Neurons: 4

1d: 132 10: 133
NLSIDMN NLSIDMN

[
NLSIDMN

Id: 14
NSU [NLSIDMN]
Neurons: 3

Id: 14.0 Id: 14.1 Id: 142
NLSIDMN NLSIDMN NLSIDMN

Id: 15
NSU [NLSIDMN]
Neurons: 2

1d: 15.1
NLSIDMN

Id: 150
NLSIDMN

® switching and

neural units
form linear
blocks

e NNSU is
acyclic graph
of linear
blocks
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Jance’y/Forgy clustering

1 for randomly chosen sequence 1 < ji < jo < -+ < jg < p set

2 letr,---,

new old new old
C, =¢Cq =2, and S5 =85 ={z,},g=1,

Ip is random permutation of the 1,--- | p,

3 FORALLk=r, -,

DO

END

let g be such index that z, € S3°,
i =min {v[]|e?? — z| = ming1,.. h{||c°’°’fz }}

old
old old= Zk— cq old old Z— c
Cq =Cq 1820 ¢ =¢ + ‘Sold‘

Sold Sold \ {Zk} Sold Sold U {Zk}

4 IF (3q)(S§™ #S9°)
THEN for all such q let ¢§® = ¢, Sg#* = Sg and GOTO 2

5 STOP

,d
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Separation border - two examples




Neural

Networks in DAG representation for genetic optimization
Frantisek Haki 1 he two main requirements on representation

Dep. of ML 1 a representation must correspond in an acceptable way to a
Neural nets directed acyclic graph
with switching . .
units 2 on the set of all representations the evolutionary operators
ot aptmesion (mutation, crossover) can be defined, so the set of
ot meniese representations is closed against such operators
HEP data
separation DECODE
examples
|. Tau Hadron (2' 'S, 0)
,dr @, P, 0)
Ill. FNAL D
HW imple- 0, 'lses’, (3,7,8,...))
mentation (0, 'ls’, (2,4,5,...))
One chanel study (2' P 0)

Comparative study
Summary 0,'l", (4,5,4,...))
(2,'s',0)
0,'l’, (4,2,4,...))

0,., (54,3,...))

Read’'s Code INST PAR
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Construction of DAG — example

i/
DAG construction according to an instruction tree.
Note: not all acyclic graphs can be constructed in this way
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Summary 3 FR
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Dep. of ML

Neural nets

j2 jet : j2 jet

with switching P2 JZ_J R L ‘“_J .
units Ju jet g1 jet
Model overview b3 b3
Genetic optimization
of NNSU architecture 5 t 5

boson 2 Tu 2
HEP data - { . & 7
separation b b
examples
I. Tau Hadron b Lt
"b:ig‘sifrﬁa“’::' I lepton (e™/p™) I lepton (e™/u™)
IIl. FNAL DO} data p1 v neutrino P v neutrino

a) Signal b) Background

HW imple- (a) Sig (b) (s
mentation
One chanel study Fig. 3. Feynman diagram of decay trees.

Comparative study

Summary

Moy 5= /(B +5)° = (o) + 0))” = (), + (by);)° = (tRo); + (22)))°
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Histogram of background and signal for 0007 test.dta.res

events/bin

NNSU output

signal should be
mapped to 1,
background should
be mapped to 0 (in
an ideal case)

best signal win-
dow:
(0.5,1.2)

best background
window:
(-0.2,0.4)
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I. Tau Hadron

<Tonal 6, mear
background 1099, me

Signal 73, m
background 305, m

1 (smooth 0)
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1. Higgs search -
M, distribution
1ll. FNAL D) data 0 E

HW imple-
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Summary o
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Dep. of ML 2000 sets of 40 signals
Neural nets and 120 backgrounds with

with switching Mbb histogram with errorbars, . /stable-version/lin-less-simplified//0007 test.dta.res

units 160 , : Mpp € (90, 150)GeV are
SW S+B 2000 sets &
Model overview W S+B 2000 sets &
randomly selected.
Genetic optimization 140
of NNSU architecture
+ For each set i numbers
HEP data 120
separation N : S; and B; of all signals
5
examples 5 100
. Tau Hadron E and backgrounds accepted
. s 80
1. Higgs search - E y 4 A 3
M, distribution g i by 20GeV bins in signal
g
Il AL B i =50 : (background) window are
HW |mple- Ty 23 computed.
mentation a a i
GBI 20 e : Mean values of S; and
Comparative study 4 4
L2} L] B, for signal (background)
Summary %50 80 100 120 140 160 180 20
M_bb (Gev) window are ploted with

coresponding o.
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goal: speed up event
processing

usability: low level triggering
and other time edge
applications

methodology: the cheapest
possible implementation of
one data channel in order to
measure HW disturbances

tested speed: approximately 5
kilosamples per second
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FrantiSek Hakl. W disturbance error for Cherenkov Gamma-Ray Telescope (left)
Dep. of ML and Hadronic-tau separation (right) - separation is still acceptable
Neural nets ! i Deta ROC ! d Boita ROC
with switching S Nean
units 08 08

Model overview

Genetic optimization
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examples

I. Tau Hadron

I1. Higgs search - o b o
M, distribution

IIl. FNAL DO data

HW imple- ° o a:c:plsd baz;kgmundgm?e o ! ’ o acuc:med backgvuund(v’:e o
mentation

One chanel study

Comparative study

Summary Estimated speed - 20-25 megasamples per second - if

® best nowadays electronic components (but still commercial)

e parallel HW implementation



Neural
Networks in
HEP

Franti§ek Hakl

Dep. of ML

Neural nets
with switching
units

HEP data
separation
examples
|. Tau Hadron

ibut
IIl. FNAL D() data

HW imple-
mentation

Summary

Summary

NNSU - general separation tool
GA optimization of separation performance

fitness functions of GA allow meet specific user defined
requirements

tested on simulated LHC (CERN) and D) (FNAL, both
simulated and measured) physical data sets

improve cut based methods and comparable with standart
TVMA ROOT methods

potentially very fast HW implementation — Czech patent No.
306533
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