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The Origin of the Problem

» Consider schematically defined clause sets such as
P(x,0), P(x,1), ---, P(x,n)

—P(x,0), =P(y,0), =s(y) < x
=P(x,1), =P(y,1), =s(y) < x

=P(x,n), =P(y,n), -s(y) < x
m(x,y)<z,x<z
m(x,y) < z,y <z

» Each instance can be handled individually.

> We want to construct a finite representation of all instance

resolution refutations of such clause sets.
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The Origin of the Problem

» The formal representation of such refutations is discussed in

“Schematic Refutations of Formula Schemata”, David M.
Cerna, Alexander Leitsch, and Anela Lolic

> The goal of that work is inductive proof transformation and
extraction of Schematic Herbrand Sequents.

» The bulk of the information is stored in a schematic unifier
extracted from the formal representation of the refutation.

» Such unifiers need to be constructed during the formalization
process.

P In this talk, we discuss a small step towards algorithmically
constructing schematic unifiers.
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Schematic Unification Problems - Extension

» Consider the following unification problem:

h(h(X2’ h(X17X2))> é\) = h(Ba h()/1a h()/27)/1)))

» Here 4 and b denote recursion variables and are associated
. . !
with so called extension operators. exj(-) and ex (-) where s
and s’ are some terms.

» The convention taken in this work is that h(h(x2, h(x1,x2)), 8)
is an extendable term and

ex3(8) = h(h(x2, h(x1,x2)),8) = s

» Each extendable term has an associated extension operator
and a unique recursion variable.
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Schematic Unification Problems - Shifting

» Now consider the variables

h(h(X2, h(X17X2))7 é\) : h(i), h(ylu h()/27)/1)))

» Variables used in our schematic unification problem belong to
variable classes.

» A variable class is a pair (Z, <) where Z C V and < is a strict
well-founded total linear order of Z. Each class has a
successor function SUCE(-) with following properties over Z:

> x < SucZ(x)

> Suct(x) < Suci(y) = x<y
» We define a shift operator s#(-) which replaces all variables in
Z by their successors with respect to the variable class (Z, <).

slide 5/27



Application of the Operators

The shift operator is applied recursively to terms as follows:
> sz(f(tla ) tn)) = f(sz(tl)v T 7sz(tn))
> for z € VK, s.t. x € X, s%(z) = Suc(z)
> for € S,s%(3) =4
The extension operator is applied recursively to terms as follows:
> exi(f(ty, -, tn)) = fex3(tr), -+ ,exi(tn))
> forz e Z, ex3(z) =z
> ex3(d) =s
» for b € R such that 4 # b, exg([)) =b
Both may be applied to unifiers, but the extension operator only
changes the right-hand side term.
> ex;({x = t}) = {x = ex}(t)}
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Schematic Unification Problems - the Sequence

> Let s = h(h(xo, h(x1,x2)),4) and t = h(b, h(y1, h(y2, y1))).
Repeated application of extend and shift results in the
following sequence:

2

s=t

x3(s¥(s)) = exj(s” (1))

ox3(s* (- ex3(sX(s)) ) = ex(s” (- exf(sV (1)) )

» Loop unification, denoted by s 2t requires finding a solution
to all instance unification problems.

> We focus on left semiloop unification, i.e. only the left side is
extendable.

» The right side is the same in every instance.
» The right semiloop unification is symmetrically defined.

» Loops are denoted by (s, t) ((s, t| for left semiloops).
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Extensions of Loops and Semiloops

P Instance problems are derived from extensions of loops.

» The n-extension of the loop (s, t), denoted by (s, t), is
defined recursively as follows:

> <57 t>0 = <§’ B>

> (s, thns1 = (ex3(s(s')), exi(s(t))) where (s, t), = (s',t').
» Semiloops, only the left side will be shifted and extended.
(s, tlny1 = (ex3(s(s')), t| where (s, t|, = (s, t].

\ 2 4

When we say s Ztis loop unifiable, we mean for all n, such
that (s, t|, = (s, t'|, s’ = t’ is unifiable.

slide 8/27



Relationship to Existing Work

> Notice that this construction has similarities with both
Narrowing methods and Primal grammars.

» The following example illustrates the differences:
h(h(x2, h(x1, x2)), 8) = h(y1, y1)

Solving the above problem requires solving both:
h(h(x2, h(x1, x2)), 8) = h(y1, y1)

h(h(x3, h(x2, x3)), h(x2, h(x1,%2))) £ h(y1, 1)
» Notice that the second problem in the sequence introduces
fresh variables as well as “used” variables.

» While this construction can be expressed using the above
mentioned methods, few if any existing results are applicable.
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Types of (Semi)loop Unifiability

» There are two ways (s, t|, can unify depending on whether 4
occurs in the unifier o derived from the solved form.

(1) & occurs in the domain of o.
(2) & does not occur in the domain of &

» When there is a choice, we assume a preference for 3
occurring in the domain, i.e. 4§ = x;.
> We refer to extensions of type (1) as extendably unifiable.

» The intuition being that if 4 < t* occurs in the solved form,
the unification problem may be extended.

» If every extension of a loop (s, t| is extendably unifiable then
we say (s, t] is infinitely loop unifiable.

» Otherwise we say (s, t| is finitely loop unifiable.
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Halting and Infinite Loop Unifiable

» When an extension (s, t| is Type (2) unifiable, a unifier can
be built for all extensions (s, t|,, for r > k.
» Concerning extensions (s, t|x which are Type (1) unifiable it is
more complex.
» The title of this talk comes from the Type (1) unifiability
problem:
function LooPUNIF((s, t|, k)
if (s, t| is extendably unifiable then
LoopPUNIF((s, t|, k + 1)
end if
end function
» It is currently open if a decision procedure exists concerning
the halting of the above procedure.
» We will present a sufficient condition for infinite/finite loop
unifiability of semiloops.
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Example Finite Loop Unifiability

» Let us consider the semiloop (s, t| =
(h(h(h(x2, h(x1,x1)), x3), ), h(h(ya, y3), h(y1,y2))l
» The first extension is unifiable by
{y3 = x3, ya > h(xe, h(x1, x1)) , @ h(y1,y2)}.
» Thus, (s, t|; is extendably unifiable. What about the (s, t|2?
(h(h(h(x2; x1), h(x2,x3)), h(h(h(x2, x1), h(x2,3)), ) , t|
» It is unifiable by {y3 — x4, ya — h(x3, h(x2, x2)),
y1 = h(h(x2, h(x1,x1)),x3), y2 — 4}

P> This extension is not extendably unifiable.
» It is trivial to show finite unifiability of (s, t|.
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Example Not Loop Unifiable

» Let us consider the semiloop (s, t| =
(h(h(h(x2;x1), h(x2,3)), ) h(h(y3,y1), h(ys, ya))l
» The first extension is unifiable by
{y3 = h(x2,x1) , y1 — h(x2,x3) , d+> h(ya,ya)}.
» Thus, (s, t|; is extendably unifiable. What about (s, t[2?
(h(h(h(x3,x2), h(x3,xa)), h(h(h(x2, x1), h(x2,x3)), 8)) , t]|
> It is unifiable by

{y3 = h(x3,x2), ya = h(h(x2,x1), h(x2, x3)),
y1 = h(x3,xa), 4+ h(h(x2,x1), h(x2,x3))}.

» Thus (s, t|2 is also extendably unifiable.
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Example Not Loop Unifiable

» What about (s, t|3?
<h(h(h(h(X4, X3)7 h(X4, X5))7 h(h(h(X3, X2), h(X3, X4)),

h(h(h(x27 X1), h(X27 X3))7 5))) ) t‘

» Notice the solved form contains an occurrence check:

{3 = h(xa, x3), ya = h(h(x3, x2), h(x3, ),
b4 = h(X47X5)a a= h(X37X4)7 X3 = h(X27X1)>
Xo = h(X2I,X3)}.
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Example Infinite Loop Unifiable

» One of the simplest infinite loop unifiable semiloops is
(s, t| = (h(h(x1,x1),8) , h(y1, )|

» The solved form of every extension contains 4 as h(x1, x1).

» A more complex example would be (s, t| =

(h(a, h(h(h(x1,x1), x1), 1)), h(h(h(h(y1, 1), y1); 1), y1))

» Using the following abbreviation:

t(n) = h(h(h(Xn+1, Xnt1)s Xn41), Xnt1)

> We can categorize the unifiers of each extension.
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Example Infinite Loop Unifiable

» The solved form of (s, t|3, will contain

4= h(h(t(1), (1)), £(1)),
» The solved form of (s, t|3,4+1 will contain

5 ; h(h(h(h(X2 X2)7 X2)7 XQ), h(h(h(X2 X2)7 X2), X2)),
» The solved form of (s, t|3,42 will contain

3 = h(h(h(x2, x2), x2), X2).

» This pattern repeats for all m-extensions where m > 2.
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Sufficient Condition for Finite Unifiability

> It is not enough to find a non-extendably unifiable extension.

» In addition, every variable of the unifier must be large enough
not to cause occurrence checks.

Theorem

Let k > 0. Then if (s, t|x = (s, t| is unifiable by o and the

following conditions hold:

(1) 8¢ Dom(o)

(2) for all z € Dom(o) s.t. & € var(zo),
m = MaXzecvar(sh) |./| and 6 = S(U)'

s(z)| > m, where

Then for all j > k, (s, t|; is unifiable and s Z t is finitely unifiable.

» The following example illustrates why (2) is necessary.
» Note,

xi| = i.
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Finite Loop Unifiability Fails for Small variables

» Consider the following example:
(s, t| = (h(x2, h(xa, 8)), h(y1, y1)|
» The unifier of (s, t|; is as follows:
{y1— h(xs,d) , x2— h(xs,d)}
» We can generate the unifier for (s, t|, from the above unifier:
{y1 = h(xs, h(x2, h(xa, 8))), x3 = h(xs, h(x2, h(xa, 8)))}
» However, generating the unifier for (s, t|3 this way fails:

{y1 = h(x, h(x3, h(xs, h(x2, h(xa, 8))))),
x4 = h(Xe, h(x3, h(xs, h(x2, h(xs,3))))) }

» Extending the unifier results in an occurrence check.
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Decomposing Unifiers

» Given enough information about the extensions of (s, t| one
can decomposed the unifier of (s, t| .

Lemma
Let k > 1. If (s, t|1, (s, t|k, and (s, t|k4+1 are extendably unifiable
by o1, 0k, Ok+1, then o1 = shk(G)a where:
k
k : y
> sh*(:)=s(---s(-)--)
» o1 =0{4+— t'} where & ¢ Dom(6)
> o is the m.g.u of sy = sh*(t') where ju = sh*(6), and
<S, t|k = <Sk, t|.

> lterating this decomposition gives us the follow complete
decomposition of o1.
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Complete Decomposition

Lemma
Let k > 1. If for all 0 < j < k, (s, t|; is extendably unifiable by c;,
then o = D(Id, s, t, k) where D is defined as follows:

D(o,s,t,n+ 1) = sh"(0)D(s" (c0),s,s" ('), n)
D(o,s,t,0) = {4+ t}

where 0{4 — t'} is the m.g.u. of so = t,4 & Dom(#), and
V= VA

» At each step we unify the left term of the semiloop with the
term paired with 4 in the solved form.

» The substitution s¥ (o) can be restricted to relevant
variables, Those occurring in s.
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Example Decomposition

» Consider the following: (s, t| = (h(t(0),4) , h(y1, h(y2,y1))|
where t(n) = h(xp16, h(Xn+1, Xn+6))-
> (s.tls = (h(t(2), (t(1). A(2(0),))) Ay, h(vz.0))
» The solved form of h(t(2), h(t(1), h(t(0),a))) =t is
{11 £ h(xs, h(x3, %)), y2 = h(xz, h(x2,x7))
xg = h(xe, h(x1,x6)), 4= h(x3, h(xs, h(x1, X))}

» The unifier of (s, t|3 can be written as
D(id, h(t(0), 8), h(y1, h(y2, 1)), 3) =
sh*(0?)D(sh(0%), s, h(y2, £(1))), 2) =
sh?(o®)sh' (a1) D(sh' (o), 5. £(2).1) =
sh*(a?)sh(a1)a°D(sh' (0°), s, h(xa, £(1)),0) =
sh?(0®)sh* (o1)a®{4 — h(xs, h(h(x ,h(xl,x6))}
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Example Decomposition

» which is equivalent to the unifier:

{1 = h(xs, h(x3,x3)) , y2 = h(x7, h(x2, x7)) ,
Xg — h(X(,7 h(Xl,X6)) , 4+ h(X3, h(h(X(,, h(Xl,X6))}

> where
02 = {y1 — h(Xﬁ, h(Xl,X(,))}

o' = {y» = h(xe, h(x1, %))}
0% = {xg = h(xg, h(x1,%6))}

» Surprisingly, this loop is not infinitely unifiable as the
14-extension is not unifiable.
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Sufficient Condition - Cyclicity

» The second and fourth argument of D doe not directly
influence the construction of the unifier.

» This leaves the substitution sV (c#) and sV (t') such that
5 = t' occurs in the solved form of some extension.

» When a unifier for a large enough extension decomposes as
follows:

D'(ld,s,t,r +1) = O(r+ 1)D'(c?,s,t1,r)

D/(U,,,'+1, S, tr—it+1, i) = @(i)D/(U*, s, "0 — ].)

D/(Jr—j+1757 tr—j—‘rla_j) = GU)D/(0*757 t*vj - 1)

» We can construct a unifier for any extension.
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Example with a Cycle

» Consider the semiloop

<57 t’ - (h(§7 h(h(Xlﬂxl)vxl)) ) h(h(h()/l7YI)7y1)ay1)|7

and we define t(n) = h(h(Xp+1, Xn+1)s Xn+1))-
» Now consider the decomposition of (s, t|s:

D(ld,s,t,5) =
sh*(o4)D(Id, s, h(h(t(1), t(1)), t(1)),4) =
sh*(aa)sh®(03)D'(Id, s, h(t(1)), 1(1))),3) =
sh*(o4)sh®(a3)sh?(o2)D'(Id, s, t(1),2) =
sh*(04)sh®(o3)sh?(o2)sh (o1)D(Id, s, h(t(1), t(1)),1) =
sh*(04)sh*(03)sh?(o2)sh (o1)oo{f — h(h(x2, x2),x2)}
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Example with a Cycle

Where the substitutions o; are as follows:

o4 ={y2 = h(h(x1, x1),x1)}
o3 ={xo — x1}
o ={xo — x1}
o1 ={x2 — h(h(x1,x1),x1)}
oo ={x2 — x1}

» Cycle repeats within the unifiers of large extensions of (s, t|

» If a cycle is found within the decomposition of a large enough
extension, then the semiloop is infinite loop unifiable.
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When Extension is not Large Enough

» Consider (s, t| where:
s = h(h(x1, h(xi6, h(x32, h(x1, h(x16, x32))))), F)

t = h(y1, h(y2, h(y3, h(y1, h(y2, y3)))))

» The unifier of (s, t|11 decomposes such that the procedure
reaches the following steps:

D(ld, s, h(xs, h(x19, h(x3s, h(xa, h(x19, x35))))), 9)

D(ld7 S, h(X47 h(X197 h(X357 h(X47 h(X197 X35)))))7 4)
» This fits the cycle requirement, yet, (s, t|2g is not unifiable.

» In this case, large enough means 64-extension.
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Conclusion

» The results presented here provide a sufficient condition for
semiloop unification.

» Evidence points to this condition being necessary, but we do
not have a proof.

> Additionally, this concerning only a fragment of the loop
unification problem.

> We are currently investigating how to extend these result to
full loop unification with a restricted number of variable
classes.
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