
When First-order Unification Calls Itself

David M. Cerna

July 18th 2021

slide 1/27

The Origin of the Problem

I Consider schematically defined clause sets such as

P(x , 0), P(x , 1), · · · , P(x , n)

¬P(x , 0), ¬P(y , 0), ¬s(y) ≤ x

¬P(x , 1), ¬P(y , 1), ¬s(y) ≤ x

...

¬P(x , n), ¬P(y , n), ¬s(y) ≤ x

m(x , y) ≤ z , x ≤ z

m(x , y) ≤ z , y ≤ z

I Each instance can be handled individually.

I We want to construct a finite representation of all instance
resolution refutations of such clause sets.

slide 2/27

The Origin of the Problem

I The formal representation of such refutations is discussed in

“Schematic Refutations of Formula Schemata”, David M.
Cerna, Alexander Leitsch, and Anela Lolic

I The goal of that work is inductive proof transformation and
extraction of Schematic Herbrand Sequents.

I The bulk of the information is stored in a schematic unifier
extracted from the formal representation of the refutation.

I Such unifiers need to be constructed during the formalization
process.

I In this talk, we discuss a small step towards algorithmically
constructing schematic unifiers.

slide 3/27

Schematic Unification Problems - Extension

I Consider the following unification problem:

h(h(x2, h(x1, x2)), â)
?

= h(b̂, h(y1, h(y2, y1)))

I Here â and b̂ denote recursion variables and are associated
with so called extension operators. exsâ(·) and exs

′

b̂
(·) where s

and s ′ are some terms.

I The convention taken in this work is that h(h(x2, h(x1, x2)), â)
is an extendable term and

exsâ(â) = h(h(x2, h(x1, x2)), â) = s

I Each extendable term has an associated extension operator
and a unique recursion variable.

slide 4/27

Schematic Unification Problems - Shifting

I Now consider the variables

h(h(x2, h(x1, x2)), â)
?

= h(b̂, h(y1, h(y2, y1)))

I Variables used in our schematic unification problem belong to
variable classes.

I A variable class is a pair (Z , <) where Z ⊂ V and < is a strict
well-founded total linear order of Z . Each class has a
successor function SucZ<(·) with following properties over Z :
I x < SucZ<(x)

I SucZ<(x) < SucZ<(y) =⇒ x < y

I We define a shift operator sZ (·) which replaces all variables in
Z by their successors with respect to the variable class (Z , <).

slide 5/27

Application of the Operators

The shift operator is applied recursively to terms as follows:

I sZ (f (t1, · · · , tn)) = f (sZ (t1), · · · , sZ (tn))

I for z ∈ V x
N , s.t. x ∈ X , sZ (z) = Suc(z)

I for â ∈ S , sZ (â) = â

The extension operator is applied recursively to terms as follows:

I exsâ(f (t1, · · · , tn)) = f (exsâ(t1), · · · , exsâ(tn))

I for z ∈ Z , exsâ(z) = z

I exsâ(â) = s

I for b̂ ∈ R such that â 6= b̂, exsâ(b̂) = b̂

Both may be applied to unifiers, but the extension operator only
changes the right-hand side term.

I exsâ({x → t}) = {x → exsâ(t)}

slide 6/27

Schematic Unification Problems - the Sequence

I Let s = h(h(x2, h(x1, x2)), â) and t = h(b̂, h(y1, h(y2, y1))).
Repeated application of extend and shift results in the
following sequence:

s
?

= t

exsâ(sX (s))
?

= ext
b̂
(sY (t))

exsâ(sX (· · · exsâ(sX (s)) · · ·))
?

= ext
b̂
(sY (· · · ext

b̂
(sY (t)) · · ·))

I Loop unification, denoted by s
	
= t, requires finding a solution

to all instance unification problems.
I We focus on left semiloop unification, i.e. only the left side is

extendable.
I The right side is the same in every instance.
I The right semiloop unification is symmetrically defined.

I Loops are denoted by 〈s, t〉 (〈s, t| for left semiloops).

slide 7/27

Extensions of Loops and Semiloops

I Instance problems are derived from extensions of loops.
I The n-extension of the loop 〈s, t〉, denoted by 〈s, t〉n is

defined recursively as follows:
I 〈s, t〉0 = 〈â, b̂〉
I 〈s, t〉n+1 = 〈exsâ(s(s ′)), ext

b̂
(s(t ′))〉 where 〈s, t〉n = 〈s ′, t ′〉.

I Semiloops, only the left side will be shifted and extended.

I 〈s, t|n+1 = 〈exsâ(s(s ′)), t| where 〈s, t|n = 〈s ′, t|.
I When we say s

	
= t is loop unifiable, we mean for all n, such

that 〈s, t|n = 〈s ′, t ′|, s ′ ?
= t ′ is unifiable.

slide 8/27

Relationship to Existing Work

I Notice that this construction has similarities with both
Narrowing methods and Primal grammars.

I The following example illustrates the differences:

h(h(x2, h(x1, x2)), â)
	
= h(y1, y1)

Solving the above problem requires solving both:

h(h(x2, h(x1, x2)), â)
?

= h(y1, y1)

h(h(x3, h(x2, x3)), h(x2, h(x1, x2)))
?

= h(y1, y1)

I Notice that the second problem in the sequence introduces
fresh variables as well as “used” variables.

I While this construction can be expressed using the above
mentioned methods, few if any existing results are applicable.

slide 9/27

Types of (Semi)loop Unifiability

I There are two ways 〈s, t|n can unify depending on whether â
occurs in the unifier σ derived from the solved form.

(1) â occurs in the domain of σ.
(2) â does not occur in the domain of σ

I When there is a choice, we assume a preference for â

occurring in the domain, i.e. â
?

= xi .

I We refer to extensions of type (1) as extendably unifiable.

I The intuition being that if â
?

= t∗ occurs in the solved form,
the unification problem may be extended.

I If every extension of a loop 〈s, t| is extendably unifiable then
we say 〈s, t| is infinitely loop unifiable.

I Otherwise we say 〈s, t| is finitely loop unifiable.

slide 10/27

Halting and Infinite Loop Unifiable

I When an extension 〈s, t|k is Type (2) unifiable, a unifier can
be built for all extensions 〈s, t|r , for r ≥ k .

I Concerning extensions 〈s, t|k which are Type (1) unifiable it is
more complex.

I The title of this talk comes from the Type (1) unifiability
problem:

function LoopUnif(〈s, t|, k)
if 〈s, t|k is extendably unifiable then

LoopUnif(〈s, t|, k + 1)
end if

end function

I It is currently open if a decision procedure exists concerning
the halting of the above procedure.

I We will present a sufficient condition for infinite/finite loop
unifiability of semiloops.

slide 11/27

Example Finite Loop Unifiability

I Let us consider the semiloop 〈s, t| =

〈h(h(h(x2, h(x1, x1)), x3), â), h(h(y4, y3), h(y1, y2))|

I The first extension is unifiable by

{y3 7→ x3 , y4 7→ h(x2, h(x1, x1)) , â 7→ h(y1, y2)}.

I Thus, 〈s, t|1 is extendably unifiable. What about the 〈s, t|2?

〈h(h(h(x2, x1), h(x2, x3)), h(h(h(x2, x1), h(x2, x3)), â)) , t|

I It is unifiable by {y3 7→ x4, y4 7→ h(x3, h(x2, x2)),

y1 7→ h(h(x2, h(x1, x1)), x3), y2 7→ â}

I This extension is not extendably unifiable.

I It is trivial to show finite unifiability of 〈s, t|.
slide 12/27

Example Not Loop Unifiable

I Let us consider the semiloop 〈s, t| =

〈h(h(h(x2, x1), h(x2, x3)), â) , h(h(y3, y1), h(y4, y4))|

I The first extension is unifiable by

{y3 7→ h(x2, x1) , y1 7→ h(x2, x3) , â 7→ h(y4, y4)}.

I Thus, 〈s, t|1 is extendably unifiable. What about 〈s, t|2?

〈h(h(h(x3, x2), h(x3, x4)), h(h(h(x2, x1), h(x2, x3)), â)) , t|

I It is unifiable by

{y3 7→ h(x3, x2), y4 7→ h(h(x2, x1), h(x2, x3)),
y1 7→ h(x3, x4), â 7→ h(h(x2, x1), h(x2, x3))}.

I Thus 〈s, t|2 is also extendably unifiable.
slide 13/27

Example Not Loop Unifiable

I What about 〈s, t|3?

〈h(h(h(h(x4, x3), h(x4, x5)), h(h(h(x3, x2), h(x3, x4)),

h(h(h(x2, x1), h(x2, x3)), â))) , t|

I Notice the solved form contains an occurrence check:

{y3
?

= h(x4, x3), y4
?

= h(h(x3, x2), h(x3, x4)),

y1
?

= h(x4, x5), â
?

= h(x3, x4), x3
?

= h(x2, x1),

x2
?

= h(x2 ,̧ x3)}.

slide 14/27

Example Infinite Loop Unifiable

I One of the simplest infinite loop unifiable semiloops is

〈s, t| = 〈h(h(x1, x1), â) , h(y1, y1)|

I The solved form of every extension contains â
?

= h(x1, x1).

I A more complex example would be 〈s, t| =

〈h(â, h(h(h(x1, x1), x1), x1)), h(h(h(h(y1, y1), y1), y1), y1)|

I Using the following abbreviation:

t(n) = h(h(h(xn+1, xn+1), xn+1), xn+1)

I We can categorize the unifiers of each extension.

slide 15/27

Example Infinite Loop Unifiable

I The solved form of 〈s, t|3n will contain

â
?

= h(h(t(1), t(1)), t(1)),

I The solved form of 〈s, t|3n+1 will contain

â
?

= h(h(h(h(x2, x2), x2), x2), h(h(h(x2, x2), x2), x2)),

I The solved form of 〈s, t|3n+2 will contain

â
?

= h(h(h(x2, x2), x2), x2).

I This pattern repeats for all m-extensions where m > 2.

slide 16/27

Sufficient Condition for Finite Unifiability

I It is not enough to find a non-extendably unifiable extension.

I In addition, every variable of the unifier must be large enough
not to cause occurrence checks.

Theorem
Let k > 0. Then if 〈s, t|k = 〈s ′, t| is unifiable by σ and the
following conditions hold:

(1) â 6∈ Dom(σ)
(2) for all z ∈ Dom(σ) s.t. â ∈ var(zσ), |s(z)| > m, where

m = maxz∈var(sθ) |j | and θ = s(σ).

Then for all j ≥ k, 〈s, t|j is unifiable and s
	
= t is finitely unifiable.

I The following example illustrates why (2) is necessary.

I Note, |xi | = i .

slide 17/27

Finite Loop Unifiability Fails for Small variables

I Consider the following example:

〈s, t| = 〈h(x2, h(x4, â)), h(y1, y1)|

I The unifier of 〈s, t|1 is as follows:

{y1 7→ h(x4, â) , x2 7→ h(x4, â)}

I We can generate the unifier for 〈s, t|2 from the above unifier:

{y1 7→ h(x5, h(x2, h(x4, â))), x3 7→ h(x5, h(x2, h(x4, â)))}

I However, generating the unifier for 〈s, t|3 this way fails:

{y1 7→ h(x6, h(x3, h(x5, h(x2, h(x4, â))))),
x4 7→ h(x6, h(x3, h(x5, h(x2, h(x4, â)))))}

I Extending the unifier results in an occurrence check.
slide 18/27

Decomposing Unifiers

I Given enough information about the extensions of 〈s, t| one
can decomposed the unifier of 〈s, t|k .

Lemma
Let k > 1. If 〈s, t|1, 〈s, t|k , and 〈s, t|k+1 are extendably unifiable
by σ1, σk , σk+1, then σk+1 = shk(θ)σ where:

I shk(·) =

k︷ ︸︸ ︷
s(· · · s(·) · · ·)

I σ1 = θ{â 7→ t ′} where â 6∈ Dom(θ)

I σ is the m.g.u of skµ
?

= shk(t ′) where µ = shk(θ), and
〈s, t|k = 〈sk , t|.

I Iterating this decomposition gives us the follow complete
decomposition of σk+1.

slide 19/27

Complete Decomposition

Lemma
Let k ≥ 1. If for all 0 ≤ j ≤ k, 〈s, t|j is extendably unifiable by σj ,
then σk = D(Id , s, t, k) where D is defined as follows:

D(σ, s, t, n + 1) ≡ shn(θ)D(sV (σθ), s, sV (t ′), n)

D(σ, s, t, 0) ≡ {â 7→ t}

where θ{â 7→ t ′} is the m.g.u. of sσ
?

= t,â 6∈ Dom(θ), and
V = V x

N .

I At each step we unify the left term of the semiloop with the
term paired with â in the solved form.

I The substitution sV (σθ) can be restricted to relevant
variables, Those occurring in s.

slide 20/27

Example Decomposition

I Consider the following: 〈s, t| = 〈h(t(0), â) , h(y1, h(y2, y1))|
where t(n) = h(xn+6, h(xn+1, xn+6)).

I 〈s, t|3 = 〈h(t(2), h(t(1), h(t(0), â))) , h(y1, h(y2, y1))〉
I The solved form of h(t(2), h(t(1), h(t(0), â)))

?
= t is

{y1
?

= h(x8, h(x3, x8)), y2
?

= h(x7, h(x2, x7))

x8
?

= h(x6, h(x1, x6)), â
?

= h(x3, h(x6, h(x1, x6))}

I The unifier of 〈s, t|3 can be written as

D(Id , h(t(0), â), h(y1, h(y2, y1)), 3) =

sh2(σ2)D(sh1(σ2), s, h(y2, t(1))), 2) =

sh2(σ2)sh1(σ1)D(sh1(σ1), s, t(2), 1) =

sh2(σ2)sh1(σ1)σ0D(sh1(σ0), s, h(x4, t(1)), 0) =

sh2(σ2)sh1(σ1)σ0{â 7→ h(x3, h(h(x6, h(x1, x6))}
slide 21/27

Example Decomposition

I which is equivalent to the unifier:

{y1 7→ h(x8, h(x3, x8)) , y2 7→ h(x7, h(x2, x7)) ,

x8 7→ h(x6, h(x1, x6)) , â 7→ h(x3, h(h(x6, h(x1, x6))}

I where
σ2 = {y1 7→ h(x6, h(x1, x6))}

σ1 = {y2 7→ h(x6, h(x1, x6))}

σ0 = {x8 7→ h(x6, h(x1, x6))}

I Surprisingly, this loop is not infinitely unifiable as the
14-extension is not unifiable.

slide 22/27

Sufficient Condition - Cyclicity

I The second and fourth argument of D doe not directly
influence the construction of the unifier.

I This leaves the substitution sV (σθ) and sV (t ′) such that

â
?

= t ′ occurs in the solved form of some extension.

I When a unifier for a large enough extension decomposes as
follows:

D ′(Id , s, t, r + 1) = Θ(r + 1)D ′(σ∆
1 , s, t1, r)

...

D ′(σr−i+1, s, tr−i+1, i) = Θ(i)D ′(σ∗, s, t∗, i − 1)

...

D ′(σr−j+1, s, tr−j+1, j) = Θ(j)D ′(σ∗, s, t∗, j − 1)

I We can construct a unifier for any extension.
slide 23/27

Example with a Cycle

I Consider the semiloop

〈s, t| = 〈h(â, h(h(x1, x1), x1)) , h(h(h(y1, y1), y1), y1)|,

and we define t(n) = h(h(xn+1, xn+1), xn+1)).

I Now consider the decomposition of 〈s, t|5:

D(Id , s, t, 5) =

sh4(σ4)D(Id , s, h(h(t(1), t(1)), t(1)), 4) =

sh4(σ4)sh3(σ3)D ′(Id, s, h(t(1)), t(1))), 3) =

sh4(σ4)sh3(σ3)sh2(σ2)D ′(Id , s, t(1), 2) =

sh4(σ4)sh3(σ3)sh2(σ2)sh1(σ1)D(Id, s, h(t(1), t(1)), 1) =

sh4(σ4)sh3(σ3)sh2(σ2)sh1(σ1)σ0{f̂ 7→ h(h(x2, x2), x2)}
slide 24/27

Example with a Cycle

Where the substitutions σi are as follows:

σ4 ={y2 7→ h(h(x1, x1), x1)}
σ3 ={x2 7→ x1}
σ2 ={x2 7→ x1}
σ1 ={x2 7→ h(h(x1, x1), x1)}
σ0 ={x2 7→ x1}

I Cycle repeats within the unifiers of large extensions of 〈s, t|
I If a cycle is found within the decomposition of a large enough

extension, then the semiloop is infinite loop unifiable.

slide 25/27

When Extension is not Large Enough

I Consider 〈s, t| where:

s = h(h(x1, h(x16, h(x32, h(x1, h(x16, x32))))), f̂)

t = h(y1, h(y2, h(y3, h(y1, h(y2, y3)))))

I The unifier of 〈s, t|11 decomposes such that the procedure
reaches the following steps:

D(Id , s, h(x4, h(x19, h(x35, h(x4, h(x19, x35))))), 9)

D(Id , s, h(x4, h(x19, h(x35, h(x4, h(x19, x35))))), 4).

I This fits the cycle requirement, yet, 〈s, t|28 is not unifiable.

I In this case, large enough means 64-extension.

slide 26/27

Conclusion

I The results presented here provide a sufficient condition for
semiloop unification.

I Evidence points to this condition being necessary, but we do
not have a proof.

I Additionally, this concerning only a fragment of the loop
unification problem.

I We are currently investigating how to extend these result to
full loop unification with a restricted number of variable
classes.

slide 27/27

