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Introduction

I Our motivation for studying unification over term sequences
(term schemata) arose from our investigation concerning
automated proof analysis in the presence of induction.

I An analysis of Fürstenburg’s proof of the infinitude of primes
was performed using a rudimentary schematic formalism and
the first-order CERES method [Baaz et al., 2008].
I This analysis was performed without a formal framework for

schematic objects.

I Since this early work several attempts have been made to
develop a formal framework for proof sequences as well as
their analysis [Dunchev et al., 2013], [Leitsch et al., 2017 ],
[Cerna et al., 2019].
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Schematic Proofs in a Nutshell

ϕ has free variables instantiated
by σ to numerals.

σ > σ′ but no order relation
between σ and τ .

ϕ cannot be referenced in ψ, and
ψ cannot be referenced in ν, etc.

∆σ`Πσ

ϕ

∆1σ
′`Π1σ

′ ∆2τ`Π2τ

∆1`Π1

ϕ

∆2`Π2

ψ

∆3`Π3

χ

∆4`Π4

ν

∆5`Π5

µ

ϕ ψ

ψχν Nested proof
calls allowed.

µ

µ µ is the least proof and
only references itself.

ϕ

ϕBase

ϕBase cannot
make proof
calls.
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Analysis of Schematic Proofs

I With enough effort a mathematical proof can be formalized
within a logical calculus such as Gentzen’s sequent calculus.

I This formalization process will likely result in a proof with cut
rather than an analytic proof.

C ,∆ ` Γ ∆′ ` Γ′,C
cut

∆,∆′ ` Γ, Γ′

I Simulates lemmata and external theory introduction.

I Analysis of proofs concerns manipulation of the cut structure.

I Elimination of the cut structure results in an analytic proof.

I Such proofs provide additional mathematical understanding.
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Global versus Local cut-elimination

Local cut-elimination reduces a cut formula’s complexity or its
distance from the leaves.

- Introduced by Gentzen as a method of proving consistency, the
concept has been expanded well beyond the intended scope.

Global cut-elimination produces an intermediate representation
of a formal proof’s cut-structure.

- From this intermediate representation a new proof with a
trivial cut-structure is produced.

- CERES transforms the cut structure into a NNF formula
which can be refuted using resolution

.
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Local Cut-elimination and Schematic Proofs

- No cut reduction rules exists for recursive calls.

(ϕ, · · · )
C ,∆ ` Γ

(ϕj , · · · )
∆′ ` Γ′,C

cut
∆,∆′ ` Γ, Γ′

- When the call structure is non-recursive, proof references can
just be removed.

- Recursive calls block reduction of a cut formula’s position in
the proof.

- Using a global approach we can extract the cut-structure as
an unsatisfiable, recursive negation normal form formula.

An Inductive Definition
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Global Cut-elimination: Recursive NNF formula Extraction

cut 

∆`Π

Proof with cuts

cut 

Paths to cut ancestors

CL(A`A)≡{A}
CL(A`A)≡{¬A}

CL(A`A)≡{¬A∨A}

CL

(
∆ ` Π ρ

∆′ ` Π′

)
≡ CL(∆ ` Π)

CL

(
∆ ` Π ∆′ ` Π′

ρ
∆′′ ` Π′′

)
≡

 CL(∆ ` Π) ∧ CL(∆′ ` Π′)

CL(∆ ` Π) ∨ CL(∆′ ` Π′)

- Proof references are denoted by defined symbols.

- Such a recursive NNF formula is always unsatisfiable.

- Proof analysis requires refuting this recursive NNF in a
finitely representable way.
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Example of an Recursive NNF Formula

Ô(x , y , n,m) =⇒D̂(x , n,m) ∧ P̂(x , y , n,m)

D̂(x , n, 0) =⇒f (x) = Ŝ(n, a) ∨ f (x) < Ŝ(n, a)

D̂(x , n, s(m)) =⇒f (Ŝ(s(m), x) = Ŝ(n, a) ∨ f (x) < Ŝ(n, a)) ∧ D̂(x , n,m)

P̂(x , y , 0,m) =⇒Ĉ (y , 0,m) ∧ f (a) 6< 0

P̂(x , y , s(n),m) =⇒(Ĉ (y , s(n),m)) ∧ (T̂ (x , n,m)) ∧ P̂(x , z , n,m)

Ĉ (x , n, 0) =⇒f (x) 6= Ŝ(n, a)

Ĉ (x , n, s(m)) =⇒f (Ŝ(s(m), x)) 6= Ŝ(n, a) ∨ Ĉ (x , n,m)

T̂ (x , n, 0) =⇒f (x) 6< Ŝ(s(n), a) ∨ f (x) = Ŝ(n, a) ∨ f (x) < Ŝ(n, a)

T̂ (x , n, s(m)) =⇒f (Ŝ(s(m), x)) 6< Ŝ(s(n), a) ∨ f (Ŝ(s(m), x)) = Ŝ(n, a) ∨
f (x) < Ŝ(n, a) ∧ T̂ (x , n,m)

Ŝ(0, x) =⇒x

Ŝ(s(n), x) =⇒suc(Ŝ(s(n), x))
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Refuting Recursive NNF Formula

I In [Leitsch et al., 2017], the n-clause calculus of [Aravantinos
et al., 2013] was used to construct refutations.
I This method is completely automated.

I However, the method is limited in scope and most problems of
mathematical interest lie beyond it.
I The above NNF is an example.

I In [Cerna et al., 2019], we considered a semi-automated
approach to dealing with the recursive NNF formula and
designed a resolution calculus for this purpose.

I This required developing a theory of unification over
schematic terms, what we will discuss for the rest of this talk.
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Term Schema

I In a general sense, term schemata are nothing more than a
finite representation of an infinite sequence of first-order terms
sn where n is a numeric parameter.

I Syntactically, this sequence is represented by a term ŝ(n)
where ŝ may contain defined symbols indexed by the numeric
parameter n.

I Defined symbols have associated defining equations allowing
normalization to defined symbol-free first-order terms upon
parameter instantiation.

I Normalization is denoted ŝ(n)↓σ= sα where σ = {n→ α} is a
parameter substitution.
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Substitution Schemata

I Similarly, substitution schemata are finite representations of
infinite sequences of first-order substitutions σn.

I Syntactically, substitution schemata are denoted by λ̂(n) and
are sets of bindings {X (n)→ ŝ(n)} were ŝ(n) is a term
schema.

I Normalization of a substitution schema reduces to
normalization of its bindings and is denoted by λ̂(n)↓σ.

I Index variables are referred to as global variables and will be
discussed in greater detail shortly.

I The bindings used to construct a substitution schema may
also be of the form {x → ŝ(n)}.
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Unification of Term Schema

Definition
Given two term schemata ŝ(n) and t̂(n) we define ŝ(n), t̂(n) as
unifiable if there exists a substitution schema λ̂(n) such that
ŝ(n)λ̂(n)↓σ= t̂(n)λ̂(n)↓σ for all assignments σ.

I Depending on the types of variables allowed in λ̂(n) and in
ŝ(n) and t̂(n), we define two types of unification problems.

I Simple term schema unification: Only first-order variables
occur in λ̂(n), ŝ(n), and t̂(n)

I Global term schema unification: Global variables may occur
in λ̂(n), ŝ(n), and t̂(n).
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Simple Term Schema

I We assume a well-founded order < on the defined symbols.

Definition
Let ~x be a tuple of first-order variables and n be a numeric
parameter. A simple term schema is defined by primitive recursive
definitions of the form

f̂ (~x , 0) = g(~x),

f̂ (~x , s(n)) = h(~x , n, z){z ← f̂ (~x , n)}

where g(~x) is a term over the variables ~x and h(~x , n, z) is a term
over the variables ~x , z and the parameter n. If f̂ is not a
<-minimal defined symbol then both g(~x) and h(~x , n, z) may
contain defined symbols û with û < f̂ .

I We now provide a few examples.
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Example: Simple Term Schema

I The defining equations f̂ ,f̂1, and ĝ are as follows:

f̂ (x , 0) = h(a, a) f̂ (x , s(n)) = h(x , f̂ (x , n))

f̂1(x , y , 0) = h(a, a) f̂1(x , y , s(n)) = h(x , f̂ (y , n))

ĝ(x , y , 0) = h(a, a) ĝ(x , y , s(n)) = h(ĝ(x , y , n), y)

I Note that f̂1 > f̂ .

I The relation between ĝ and the other symbols is irrelevant.

I Consider the parameter assignment σ = {n→ 2} and the
evaluation of f̂1(x , y , n):

f̂1(x , y , n)↓σ= f̂1(x , y , 2)↓= h(x , f̂ (y , 1)↓) = h(x , h(y , f̂ (x , 0)↓))

= h(x , h(y , h(a, a))
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Simple Term Schema Unification

I using the term schema f̂ ,f̂1, and ĝ we can define unification
problems such as:

f̂ (x , n)
?

= ĝ(y , y , n)

I Note that σ0 = {n→ 0} and σ1 = {n→ 1} This problem
evaluates to

f̂ (x , n)↓σ0

?
= ĝ(y , y , n)↓σ0 ⇒ h(a, a)

?
= h(a, a)

f̂ (x , n)↓σ1

?
= ĝ(y , y , n)↓σ1 ⇒ h(x , h(a, a))

?
= h(h(a, a), y)

Both of which are unifiable.
I However, for σ2 = {n→ 2} it evaluates to

h(x , h(x , h(a, a)))
?

= h(h(h(a, a), y), y)

I After two steps unification fails due to occurs check.
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Simple Term Schema Unification

I For two term schemata to be unifiable, they must be unifiable
for all parameter assignments.

I The following unification problem is actually unifiable:

f̂1(x , y , s(n))
?

= ĝ(z , z , s(n))

I Let us evaluate the term schema for σ2 = {n→ 2}:

h(x , h(y , h(y , h(a, a)))) = h(h(h(h(a, a), z), z), z)

I A unifier (also MGU) for this problem is as follows:

θ = {x ← h(h(h(a, a), h(y , h(y , h(a, a)))), h(y , h(y , h(a, a)))),

z ← h(y , h(y , h(a, a)))}.
I The substitution schema (also the MGUSchema) is as follows:

ϑ̂(n) = {x ← ĝ(f̂ (y , n), f̂ (y , n), n), z ← f̂ (y , n)}.
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From Simple to Global Term Schemata

I Notice that simple term schemata repeat a finite set of
variables arbitrarily often.

I This results in occurrence check failure in many cases.

I Usually, we do not desire all variables occurrences to be the
same nor do we desire them to all be different.

I These extreme cases can be described through quantification:

f̂ (x , n) ≡ ∀xh(x , h(x , · · · , h(x , h(a, a)) · · · ))

f̂ (x , n) ≡ ∀x1, · · · xnh(x1, h(x2, · · · , h(xn, h(a, a)) · · · ))

I Global variables, variables taking numeric arguments,

I are a way of integrating indexing into the object language.

I This allows us to syntactically describe properties of the
quantifier prefix.

I Additionally, it reduces unwanted occurrence check failure.
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Global Term Schemata

Definition
Let ~X be a tuple of global variables and n be a numeric parameter.
A global term schema is defined by primitive recursive definitions
of the form

f̂ (~X , 0) = t(~X ),

f̂ (~X , s(n)) = s(~X , n, z){z ← f̂ (~X , n)}

where t(~X ) is a term over the global variables ~X and s(~X , n, z) is
a term over the global variables ~X , the individual variable z and
the parameter n. If f̂ is not a minimal defined symbol then both
t(~X ) and s(~X , n, z) may contain defined symbols û with û < f̂ .

I Notice that the domain of a unifier of global term schemata is
dependent on the numeric parameter.

I We refer to such unifiers as s-unifiers (schematic unifiers).
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From Simple to Global Term Schemata

I Consider the following global term schema:

f̂ (X , 0) = h(a,X (0)) f̂ (X , s(n)) = h(X (s(n)), f̂ (X , n))

ĝ(X , 0) = h(X (0), a) ĝ(X , s(n)) = h(ĝ(X , n),X (s(n)))

I Consider the unification problem f̂ (X , s(n))
?

= ĝ(X , s(n)).

I Evaluating this problem using σ = {n→ 1} results in

h(X (2), h(X (1), h(a,X (0)))
?

= h(h(h(X (0), a),X (1)),X (2))

I Note that the following is a unifier:

θ = {X (0)→ a , X (1)→ h(a, a) , X (2)→ h(h(a, a), h(a, a))}

I The s-unifier is θ̂(n) =
⋃n

i=0{X (i)→ ĥ(i)} where

ĥ(0) = a ĥ(s(n)) = h(ĥ(n), ĥ(n))
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Standard Term Schema

I The above term schema definitions do not have the full
expressive power of primitive recursion.

I The following defined functions increase the expressivity.

Definition
A term schema is called a standard schema if it contains

I equations of the form ĝ [α, i ](x1, . . . , xα) = xi (where
1 ≤ i ≤ α) for every projection function Iαi : ια → ι where
Iαi (β1, . . . , βn) = βi and

I equations of the form ĥ[α, c](x1, . . . , xα) = c for every
constant function of type ια → ι.

Here ĝ [α, i ], ĥ[α, c] are α-ary defined function symbols.
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Open Questions

I Is the unification problem for simple standard schemata of
recursion depth ≤ 1 decidable?

• Would need to show that it is reducible to the equivalence
problem of LOOP-1 programs.

I Is the unification problem for global standard schemata of
recursion depth ≤ 1 decidable?

• Similar to first question but the unifier’s domain size may vary.

I Is the unification problem for simple and/or global free
schemata decidable?

• While less expressive than free schemata, this type of
unification shows up in the resolution calculus described in
[Cerna et al., 2019].

I We conjecture that all three problems are decidable.
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Conclusions

I Term schemata provide an interesting unification problem
motivated by computational proof analysis.

I We have yet to consider the equational variants of the above
mentioned unification problems.

I It is also unclear if it is a variant of an existing unification
problem such as term-graph unification or higher-order
unification. Though we doubt the latter case.

I The notion of an MGU schema as well as how s-unifiers may
be put in relation has not yet been formalized. Currently we
are investigating this matter.
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