On the Unification of Term Schemata

David M. Cerna, Alexander Leitsch, Anela Lolic

°
J ! U June 17t" 2020 .M %.
UNNERSITY LNE E.{

A

0

.

slide 1/22

Introduction

» Our motivation for studying unification over term sequences
(term schemata) arose from our investigation concerning
automated proof analysis in the presence of induction.

» An analysis of Fiirstenburg's proof of the infinitude of primes

was performed using a rudimentary schematic formalism and
the first-order CERES method [Baaz et al., 2008].

» This analysis was performed without a formal framework for
schematic objects.
> Since this early work several attempts have been made to
develop a formal framework for proof sequences as well as
their analysis [Dunchev et al., 2013], [Leitsch et al., 2017 |,
[Cerna et al., 2019].

slide 2/22

Schematic Proofs in a Nutshell

ActHMNo

¢ has free variables instantiated
by o to numerals.

Schematic Proofs in a Nutshell

Ayo’FNyo’

ActHMNo

ApTHMyT

¢ has free variables instantiated
by o to numerals.

o > o' but no order relation
between o and 7.

Schematic Proofs in a Nutshell

DgkTy AgHg

Ao iTye! AgrhTpr ¢ has free variables instantiated
by o to numerals.

o > o' but no order relation
between o and 7.

ActHMNo

Schematic Proofs in a Nutshell

. — < — A4LH4 A;FH5
v

apenye! Agringer ¢ has free variables instantiated
by o to numerals.

o > o' but no order relation
between o and 7.

ActHMNo

Schematic Proofs in a Nutshell

ActHMNo

Nested proof g ” \“

calls allowed. Mgty AgHT

¢ has free variables instantiated
by o to numerals.

o > o' but no order relation
between o and 7.

 cannot be referenced in %, and
1) cannot be referenced in v, etc.

Schematic Proofs in a Nutshell

: T N 7 N 7
‘p/ | is the least proof and so / \z/) \>/
, only references itself. \V ‘
7//[/ y) Aq-Ty Ap-p AgHN3
v/ X/ '@/ | Nested proof \ Y \
: calls allowed. v

e DgkTy AgHg

apenye! Agringer ¢ has free variables instantiated
by o to numerals.

o > o' but no order relation
between o and 7.

 cannot be referenced in %, and
ActTlo 1) cannot be referenced in v, etc.

Schematic Proofs in a Nutshell

PBase/ N 7 AN
/| is the least proof and || ¢ \ ¥ \>/
\ only references itself. \/
. ’M” ATy NI AgHM3
\‘p . viX Nested proof \ ¥/ \ ¥
N calls allowed. Ay, Ao
Ala% o/ Bprinyr ¢ has free variables instantiated

ActHMNo

slide 3/22

by o to numerals.

YBase Cannot
make proof
calls.

o > o' but no order relation
between o and 7.

 cannot be referenced in %, and
1) cannot be referenced in v, etc.

Analysis of Schematic Proofs

vvyyypy

With enough effort a mathematical proof can be formalized
within a logical calculus such as Gentzen's sequent calculus.

This formalization process will likely result in a proof with cut
rather than an analytic proof.

C,AFT ARTC
AN T T
Simulates lemmata and external theory introduction.

cut

Analysis of proofs concerns manipulation of the cut structure.
Elimination of the cut structure results in an analytic proof.

Such proofs provide additional mathematical understanding.

slide 4/22

Global versus Local cut-elimination

Local cut-elimination reduces a cut formula’s complexity or its
distance from the leaves.

- Introduced by Gentzen as a method of proving consistency, the
concept has been expanded well beyond the intended scope.

slide 5/22

Global versus Local cut-elimination

Local cut-elimination reduces a cut formula’s complexity or its
distance from the leaves.

- Introduced by Gentzen as a method of proving consistency, the
concept has been expanded well beyond the intended scope.

Global cut-elimination produces an intermediate representation
of a formal proof’s cut-structure.

- From this intermediate representation a new proof with a
trivial cut-structure is produced.

- CERES transforms the cut structure into a NNF formula
which can be refuted using resolution.

slide 5/22

Local Cut-elimination and Schematic Proofs

- No cut reduction rules exists for recursive calls.

o))
C,AFT AT C
ADNFT,T cut

- When the call structure is non-recursive, proof references can
just be removed.

- Recursive calls block reduction of a cut formula’s position in
the proof.

- Using a global approach we can extract the cut-structure as
an unsatisfiable, recursive negation normal form formula.

An Inductive Definition

slide 6/22

Global Cut-elimination: Recursive NNF formula Extraction

Proof with cuts

Global Cut-elimination: Recursive NNF formula Extraction

Proof with cuts Paths to cut ancestors

Global Cut-elimination: Recursive NNF formula Extraction

CL(A-A)={A}
CL(AFA)={-A}
CL(AFA)={-AVA}

Proof with cuts Paths to cut ancestors

- Proof references are denoted by defined symbols.
- Such a recursive NNF formula is always unsatisfiable.

- Proof analysis requires refuting this recursive NNF in a
finitely representable way.

Global Cut-elimination: Recursive NNF formula Extraction

CL(A-A)={A}
CL(AFA)={-A}
CL(AFA)={-AVA}

AT p)ECL(Al—ﬂ)
AN’

Proof with cuts Paths to cut ancestors

- Proof references are denoted by defined symbols.
- Such a recursive NNF formula is always unsatisfiable.

- Proof analysis requires refuting this recursive NNF in a
finitely representable way.

Global Cut-elimination: Recursive NNF formula Extraction

CL(A-A)={A}
CL(AFA)={-A}
CL(AFA)={-AVA}

CL(ArT p)zCL(Al—I‘I)

AkRN A -
al axn AR o) =
A// . |-|//
{ CL(A F M) A CL(A" + 1)
Proof with cuts Paths to cut ancestors armva =n)

- Proof references are denoted by defined symbols.
- Such a recursive NNF formula is always unsatisfiable.

- Proof analysis requires refuting this recursive NNF in a
finitely representable way.

slide 7/22

Example of an Recursive NNF Formula

é()gy7 n, m) =>5(x, n,m) A IS(X,y7 n, m)
D(x,n,0) =f(x) = 5(n,a) vV f(x) < S(n,a)
D(x,n,s(m)) =f(5(s(m),x) = 5(n,a) V f(x) < S(n,a)) A D(x,n, m)
P(x,y,0,m) =C(y,0,m) A f(a) £ 0
P(x,y,s(n),m) =(C(y,s(n),m)) A(T(x,n,m)) A P(x,z,n, m)
C(x,n,0) =f(x) # 5(n, a)
C(x,n,s(m)) =(5(s(m), x)) # S(n.a) v C(x,n, m)
T(x,n,0) =f(x) £ S(s(n),a) v f(x) =S(n,a) vV f(x) < 5(n,a)
T(x, n,s(m)) =F(5(s(m), x)) £ S(s(n),a) v £(5(s(m),x)) = S(n,a) v
f(x) < S(n,a) A T(x,n, m)

slide 8/22

Refuting Recursive NNF Formula

» In [Leitsch et al., 2017], the n-clause calculus of [Aravantinos
et al., 2013] was used to construct refutations.

» This method is completely automated.

» However, the method is limited in scope and most problems of
mathematical interest lie beyond it.

» The above NNF is an example.

» In [Cerna et al., 2019], we considered a semi-automated
approach to dealing with the recursive NNF formula and
designed a resolution calculus for this purpose.

» This required developing a theory of unification over
schematic terms, what we will discuss for the rest of this talk.

slide 9/22

Term Schema

» In a general sense, term schemata are nothing more than a
finite representation of an infinite sequence of first-order terms
Sp Where n is a numeric parameter.

» Syntactically, this sequence is represented by a term §(n)
where § may contain defined symbols indexed by the numeric
parameter n.

» Defined symbols have associated defining equations allowing
normalization to defined symbol-free first-order terms upon
parameter instantiation.

» Normalization is denoted 5(n)),= so where 0 = {n — a} is a
parameter substitution.

slide 10/22

Substitution Schemata

» Similarly, substitution schemata are finite representations of
infinite sequences of first-order substitutions o,.

» Syntactically, substitution schemata are denoted by S\(n) and
are sets of bindings {X(n) — §(n)} were §(n) is a term
schema.

» Normalization of a substitution schema reduces to
normalization of its bindings and is denoted by A(n)l,.

» Index variables are referred to as global variables and will be
discussed in greater detail shortly.

» The bindings used to construct a substitution schema may
also be of the form {x — 5(n)}.

slide 11/22

Unification of Term Schema

Definition
Given two term schemata 5(n) and £(n) we define 5(n), £(n) as
unifiable if there exists a substitution schema A(n) such that

5(n)A(n)de= £(n)A(n)l, for all assignments o.
> Depending on the types of variables allowed in A(n) and in
5(n) and £(n), we define two types of unification problems.

» Simple term schema unification: Only first-order variables

occur in A(n), 5(n), and #(n)
» Global term schema unification: Global variables may occur

in A(n), 5(n), and #(n).

slide 12/22

Simple Term Schema

> We assume a well-founded order < on the defined symbols.

Definition

Let X be a tuple of first-order variables and n be a numeric
parameter. A simple term schema is defined by primitive recursive
definitions of the form

F()_(:O) = g(x), R
f(x,s(n)) = h(x,n,z){z <« f(x,n)}

where g(X) is a term over the variables X and h(X, n, z) is a term
over the variables X, z and the parameter n. If f is not a
<-minimal defined symbol then both g(X) and h(X, n, z) may
contain defined symbols & with & < f

» We now provide a few examples.

slide 13/22

Example: Simple Term Schema

» The defining equations f.f, and g are as follows:
f(x,0) = h(a,a) f(x,;s(n) = h(x,f(x,n))
filx,y,0) = h(a,a) filx,y,s(n) = h(x,f(y,n))

g(x,y,0) = h(a,a) g(x,y,s(n)) = h(g&(x,y,n),y)

» Note that fAl > f.
» The relation between § and the other symbols is irrelevant.

» Consider the parameter assignment 0 = {n — 2} and the
evaluation of fi(x, y, n):

A(x.y, n)lo= f(x,y,2) 1= h(x, f(y,1)]) = h(x, h(y, f(x,0)1))

= h(x, h(y, h(a, a))

slide 14/22

Simple Term Schema Unification

» using the term schema f,)?l, and g we can define unification
problems such as:

f(x,n) = &(y,y,n)

» Note that o9 = {n — 0} and o1 = {n — 1} This problem
evaluates to

f(x,nngoé@(y,y,nn% = h(a,a) = h(a, a)

F(x,n)loy=8(y,y,n) ey = h(x, h(a,a)) = h(h(a,a),y)
Both of which are unifiable.
» However, for oo = {n — 2} it evaluates to

h(x, h(x, h(a, a))) = h(h(h(a,), y).y)

> After two steps unification fails due to occurs check.
slide 15/22

Simple Term Schema Unification

» For two term schemata to be unifiable, they must be unifiable
for all parameter assignments.
» The following unification problem is actually unifiable:

A(x,y,s(n) = &(z,2,5(n))
» Let us evaluate the term schema for o, = {n — 2}:
h(x, h(y, h(y, h(a, a)))) = h(h(h(h(a, a), 2), z), 2)
» A unifier (also MGU) for this problem is as follows:
0 = {x < h(h(h(a, a), h(y, h(y, h(a,)))), h(y, h(y, h(a;)))),

z « h(y, h(y, h(a, a)))}.
» The substitution schema (also the MGUSchema) is as follows:

I(n) = {x = &(F(y.), F(y, n),n), z ¢ F(y,n)}.

slide 16/22

From Simple to Global Term Schemata

>

v

>

Notice that simple term schemata repeat a finite set of
variables arbitrarily often.

This results in occurrence check failure in many cases.

Usually, we do not desire all variables occurrences to be the
same nor do we desire them to all be different.

These extreme cases can be described through quantification:

f(x,n) = Vxh(x,h(x, -, h(x,h(a,a))--))

A

f(x,n) = Vxi, - xph(x1, h(x2, -+, h(xn, h(a,a))---))

Global variables, variables taking numeric arguments,
are a way of integrating indexing into the object language.

This allows us to syntactically describe properties of the
quantifier prefix.
Additionally, it reduces unwanted occurrence check failure.

slide 17/22

Global Term Schemata

Definition

Let X be a tuple of global variables and n be a numeric parameter.
A global term schema is defined by primitive recursive definitions
of the form

f(X,00 = t(X),
f(X,s(n)) = s(X,n z){z+ (X, n)}

where t(X) is a term over the global variables X and s(X, n, z) is
a term over the global variables X, the individual variable z and
the parameter n. If f is not a minimal defined symbol then both
t(X) and s(X, n, z) may contain defined symbols o with & < f.

» Notice that the domain of a unifier of global term schemata is
dependent on the numeric parameter.
» We refer to such unifiers as s-unifiers (schematic unifiers).

slide 18/22

From Simple to Global Term Schemata

» Consider the following global term schema:
f(X,0) = h(a,X(0)) F(X,s(n)) = h(X(s(n)), (X,n))
g(X,0) = h(X(0),a) &(X,s(n)) = h(&(X,n),X(s(n)))

Consider the unification problem (X, s(n)) = g(X, s(n)).
» Evaluating this problem using o = {n — 1} results in

v

h(X(2), h(X(1), h(a, X(0))) = h(h(h(X(0),a), X(1)), X(2))
» Note that the following is a unifier:

0 ={X(0) = a, X(1) = h(a,a) , X(2) = h(h(a, a), h(a, a))}

) =
> The s-unifier is (n) = "o {X(i) — h(i)} where

)
h(0) =a h(s(n) = h(h(n), h(n))

slide 19/22

Standard Term Schema

» The above term schema definitions do not have the full
expressive power of primitive recursion.

» The following defined functions increase the expressivity.

Definition
A term schema is called a standard schema if it contains
» equations of the form g[a, i](x1,...,Xq) = x; (where
1 < i < a) for every projection function /#: t:* — ¢ where
Iia(ﬁla .- 7ﬂn) = f; and
> equations of the form hla, c](x1, ..., xa) = ¢ for every
constant function of type t* — .

Here g[a, i], h[a, c] are a-ary defined function symbols.

slide 20/22

Open Questions

» s the unification problem for simple standard schemata of
recursion depth < 1 decidable?

e Would need to show that it is reducible to the equivalence
problem of LOOP-1 programs.

» s the unification problem for global standard schemata of
recursion depth < 1 decidable?

e Similar to first question but the unifier's domain size may vary.

» [s the unification problem for simple and/or global free
schemata decidable?

e While less expressive than free schemata, this type of
unification shows up in the resolution calculus described in
[Cerna et al., 2019].

» We conjecture that all three problems are decidable.

slide 21/22

Conclusions

> Term schemata provide an interesting unification problem
motivated by computational proof analysis.

> We have yet to consider the equational variants of the above
mentioned unification problems.

» It is also unclear if it is a variant of an existing unification
problem such as term-graph unification or higher-order
unification. Though we doubt the latter case.

» The notion of an MGU schema as well as how s-unifiers may
be put in relation has not yet been formalized. Currently we
are investigating this matter.

slide 22/22

