
Term Generalization for Idempotent Equational
Theories

David M. Cerna and Temur Kutsia

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

July 7th, 2018

slide 1/21

Term Generalization

I Let Σ be a signature of ranked function and constant
symbols, V a countably infinite set of variables, and L the
language constructible from Σ ∪ V.

I Generalization: given t, s ∈ L find an r ∈ L s.t. ∃ s σ1 and σ2
and rσ1 = t and rσ2 = s.

I We extend the generalization problem by adding idempotent
functions to Σ and considering equality modulo idempotency.

I In particular we are looking for least general generalizers
(lggs), i.e. 6 ∃ σ and r ′ s.t. for a given r , r ′ = rσ.

slide 2/21

Two Idempontent functions ≡ Infinite Set of LGGs

I In “Generalisation de termes en theorie equationnelle. Cas
associatif-commutatif” by L. Pottier, an example using two
idempotent function symbols whose solutions contains an
infinite number of incomparable generalizations was given.

I Let Σ = {f (·, ·), g(·, ·), a, b} where f and g are idempotent.
We refer to the equational theory as I{f ,g}.

f (a, b) , g(a, b)

slide 3/21

A Infinite Sequence of Generalizations

I The following terms generalize the anti-unification problem:

g(f (a, x), f (y , b)) f (g(a, x), g(y , b))

g(f (a, x), f (y , b)) {x 7→ a , y 7→ b} =I{f ,g} g(a, b)

g(f (a, x), f (y , b)) {x 7→ b , y 7→ a} =I{f ,g} f (a, b)

I This is not a complete set, but enough for constructing an
infinite incomparable sequence.

S0 = g(f (a, x), f (y , b))

Sn+1 = f (g(f (a, x), f (y , b)), g(Sn, f (g(a, x), g(y , b))))

f (g(f (a, x), f (y , b)), g(Sn, f (g(a, x), g(y , b)))) 6=I{f ,g}

f (g(f (a, x), f (y , b)), g(Sn+1, f (g(a, x), g(y , b))))

slide 4/21

One Idempontent function ≡ Infinite Set of LGGs?

I If one idempotent function symbol turns out to be finitary,
then the above result would imply that joining two finitary
theories can result in an infinitary theory. Unstable behavior!

I But does the above example really need both f and g?

I Considering f and g to be functions it is easy to imagine an h
such that h′(a, a, b) = f (a, b) and h′(b, a, b) = g(a, b).

I What if we apply this reasoning to our problem and look at
the anti-unification problem:

h(a, h(a, b)) , h(b, h(a, b))

slide 5/21

One Function, Infinite Solutions

I The following terms generalize the anti-unification problem:

h(h(x , h(x , b)), h(a, h(x , b))) h(f (x , h(a, x)), h(h(x , b), h(a, b)))

h(h(x , h(x , b)), h(a, h(x , b))) {x 7→ a} =I{h} h(a, h(a, b))

h(h(x , h(x , b)), h(a, h(x , b))) {x 7→ b} =I{h} h(b, h(a, b))

I Notice that the solutions are in some sense simpler and thus
more fundamental. Less variables.

I Using the Pottier construction we can produce an infinite set
of incomparable LGGs.

slide 6/21

Minimal Complete Pottier construction

I Given that one idempotent function symbol is enough for
infinitely many solutions, What is the simplest example of this
behavior?

I It turns out that
f (a, b) , f (b, a)

is enough

f (f (x1, a), f (b, x2)) f (f (x1, b), f (a, x2))

I We can generalize of Pottier’s construction to illustrate this:

slide 7/21

A minimal complete set

S0 = {f (f (x1, a), f (b, x2)), f (f (x1, b), f (a, x2))}.
Sk = {f (s1, s2) | s1, s2 ∈ Sk−1, s1 6= s2} ∪ Sk−1, k > 0.

I The limit S∞ can be proven minimal complete for the above
problem and bounds on the growth can be computed.

slide 8/21

Proof: Growth of Sn is O
(
22n)

|S(n−1)| |Sn| − |S(n−1)|

|S
(n
−
1
)|2
−
|S

(n
−
1
)| |Sn|

|S(n+1)| = |Sn|2 − |S(n−1)|2 + |S(n−1)| |S1| = m |S0| = 1

slide 9/21

Is the S-hierarchy Enough?

I While the S-hierarchy works for f (a, b) , f (b, a) it fails for
slightly more complex problems, i.e.

f (a, f (a, b)) , f (a, f (b, a))

It captures an infinite number of incomparable generalizations,
but it also misses an infinite number because f (a, b) , f (b, a)
is embedded within this problem:

f (a, f (f (x , a), f (b, y))) ∈ S∞ f (a, f (f (x , b), f (a, y))) ∈ S∞

f (f (a, f (f (x , a), f (b, y))), f (a, f (f (x , b), f (a, y)))) ∈ S∞

f (a, f (f (f (x , a), f (b, y)), f (f (x , b), f (a, y)))) 6∈ S∞

slide 10/21

Capturing Minimal Completeness

I Idempotent Generalization has more structure than the
S-hierarchy can capture.

I Consider, instead of computing generalizers:

f (a, f (f (x , a), f (b, y))) f (a, f (f (x , a), f (b, y)))

we construct a binding list

[x 7→ f (a, x2)] [x2 7→ f (f (z1, a), f (b, x4))]

[x 7→ f (a, x2)] [x2 7→ f (f (z2, b), f (a, x5))]

I using these binding list we can construct a larger set of
binding:

[x 7→ f (a, y)]
[y 7→ f (f (z , b), f (a,w))]
[y 7→ f (f (w , a), f (b, z))]

algorithmically.
slide 11/21

Capturing Minimal Completeness

I This set can be extended to the following:

[x 7→ f (a, y)]
[x 7→ f (f (a, y), f (a, y))]

[y 7→ f (f (z , b), f (a,w))]
[y 7→ f (f (w , a), f (b, z))]
[y 7→ f (f (f (w , a), f (b, z)), f (f (z , b), f (a,w)))]

I If we collapse the bindings, both

f (a, f (f (f (w , a), f (b, z)), f (f (z , b), f (a,w))))

and

f (f (a, f (f (w , a), f (b, z))), f (a, f (f (z , b), f (a,w))))

are induced terms.
slide 12/21

Its a Set, its a Substitution, its a Tree Grammar?!

N = {xgen, x1, . . . , x6},
T = {f , a, b, y1, y2},
R = {xgen → x1, xgen → f (xgen, xgen),

x1 → f (a, x2), x1 → f (f (a, f (y1, a)), x3),

x1 → f (f (a, f (a, y2)), x4), x1 → f (x1, x1),

x2 → f (f (y1, a), f (b, y2)), x2 → f (f (y1, b), f (a, y2)),

x2 → f (x2, x2),

x3 → f (a, f (b, y2)), x3 → f (f (a, y2), x5),

x3 → f (f (a, f (y1, a)), f (y2, f (b, y2))), x3 → f (x3, x3),

x4 → f (y1, f (a, y2)), x4 → f (f (y1, a), x6),

x4 → f (f (y1, f (y1, b)), f (a, f (a, y2))), x4 → f (x4, x4),

x5 → f (f (y1, a), f (b, y2)), x5 → f (f (y1, b), f (a, y2)),

x5 → f (x5, x5),

x6 → f (f (y1, a), f (b, y2)), x6 → f (f (y1, b), f (a, y2)),

x6 → f (x6, x6)}.

This is the tree grammar
of f (a,f (a,b)),f (a,f (b,a))

In addition to the
expected rules we in-
clude rules of the form
x5 → f (x5, x5)

These rules capture the
expansion presented ear-
lier.

STORE = {y1 : a , b, y2 : b , a}

.

slide 13/21

I-PreGen or How to Make the Grammars

I-PreGen is the generalization algorithm which provides the
foundation for the tree grammar construction:

Dec: Decomposition

{x : f (s1, . . . , sn) , f (t1, . . . , tn)} ·∪ A; S ; B =⇒ {y1 : s1 , t1, . . . , yn : sn , tn} ∪ A; S ; B{x 7→ f (y1, . . . , yn)}
where f is a free function symbol, n ≥ 0, and y1, . . . , yn are fresh variables.

Solve: Solve

{x : s , t} ·∪ A; S ; B =⇒ A; {x : s , t} ∪ S ;B,

where head(s) 6= head(t) and neither head(s) nor head(t) is an idempotent symbol.

Id-Left: Idempotent symbol in the left

{x : f (s1, s2) , t} ·∪ A; S ; B =⇒
{y1 : s1 , t, y2 : s2 , t} ∪ A; S ; B{x 7→ f (y1, y2)},

where f is an idempotent function symbol, head(t) is not idempotent, and y1 and y2 are fresh variables.

Id-Right: Idempotent symbol in the right

{x : s , f (t1, t2)} ·∪ A; S ; B =⇒
{y1 : s , t1, y2 : s , t2} ∪ A; S ; B{x 7→ f (y1, y2)},

where f is an idempotent function symbol, head(s) is not idempotent, and y1 and y2 are fresh variables.

slide 14/21

I-PreGen or How to Make the Grammars

Id-Both 1: Idempotent symbol on both sides 1

{x : f (s1, s2) , f (t1, t2)} ·∪ A; S ; B =⇒
{y1 : s1 , t1, y2 : s2 , t2} ∪ A; S ; B ∪ {x 7→ f (y1, y2)},

where f is an idempotent function symbol and y1 and y2 are fresh variables.

Id-Both 2: Idempotent symbol on both sides 2

{x : f (s1, s2) , t} ·∪ A; S ; B =⇒
{y1 : s1 , t, y2 : s2 , t} ∪ A; S ; B ∪ {x 7→ f (y1, y2)},

where f is an idempotent function symbol, head(t) is idempotent, and y1 and y2 are fresh variables.

Id-Both 3: Idempotent symbol on both sides 3

{x : s , f (t1, t2)} ·∪ A; S ; B =⇒
{y1 : s , t1, y2 : s , t2} ∪ A; S ; B ∪ {x 7→ f (y1, y2)},

where f is an idempotent function symbol, head(s) is idempotent, and y1 and y2 are fresh variables.

Merge: Merge

∅; {x1 : s1 , t1, x2 : s2 , t2} ·∪ S ; B =⇒ ∅; {x1 : s1 , t1} ∪ S ; B{x2 7→ x1},
where s1 ≈I s2 and t1 ≈I t2.

slide 15/21

Two Idempotent Heads, Better than One?

I The rules Id-Both 1,2, and 3 add bindings which are later
used in the grammar.

I Essentially the occurrence of idempotent symbols on both
sides of an AUP results in branching in the solution set.
Consider, f (a, b) , f (b, a)

x : f (a, b) , f (b, a); [xgen → x] =⇒Id-Both 2

y1 : f (a, b) , b, y2 : f (a, b) , a; ∅; [xgen → x] ∪ [x → f (y1, y2)]

x : f (a, b) , f (b, a); [xgen → x]} =⇒Id-Both 3

y1 : a , f (b, a), y2 : b , f (b, a); ∅; [xgen → x] ∪ [x → f (y1, y2)]

slide 16/21

Building the Grammar

I After exhausting all derivations of I-PreGen for a given AUP
and join them, we can simplify the resulting set of bindings by
removing I-comparable bindings. This is the base set of
grammar rule.

I The full set is constructed by adding the duplication rules

Duplicate(x ,Gb) :=

{x → f (x , x) | f is an idempotent symbol and Rb contains

two different rules y → r1 and y → r2 for y ∈ reach(Gb, x)}

reach(G , ν) := {µ | ν →+
G t and µ ∈ nter(G , t)}

I We also join all of the individual stores together in STORE
and remove duplicate variable renaming.

slide 17/21

Complete and Minimal

I The resulting Grammar is both complete and minimal after
idempotent normalization of its language.

Theorem (Completeness)

Let t1 and t2 be two terms and G (t1, t2) their regular tree
grammar. Let r be a common I-generalization of t1 and t2. Then
there exists s ∈ L(G (t1, t2)) such that r �I s.

Proof.
Structural induction on r .

I Minimality requires an induction on the number of duplication
rules (i.e. x → f (x , x)) used for the construction of a given
term.

slide 18/21

Ln and Minimality

I Ln(G (t1, t2)) ⊂ L(G (t1, t2)) where t ∈ Ln(G (t1, t2)) is
constructed using n duplication rules. I.e. it is a finite
language.

Theorem
Let s and t be two terms and G (s, t) be their grammar. Then for
all n ≥ 0, Ln(G (s, t)) is minimal.

Proof.
We first perform an induction on n. Then we perform on another
induction on the m, where Lm(G (t1, t2)) is the language where a
subterm used in a generalizer from Ln+1(G (t1, t2)) comes from.
Then we perform an induction on the length of the derivation
constructing this subterm. Then finally we perform an induction on
the number of idempotent symbols occurring in the top most rule
constructing the subterm.
slide 19/21

Interesting Corollaries and Conclusions

Corollary

For all n,m ≥ 0 and n ≤ m, if r ∈ Ln(G (s, t)) then
r ∈ Lm(G (s, t)).

Corollary

L(G (s, t)) is minimal complete modulo Idempotent Equivalence.

Corollary

Idempotent generalization is infinitary.

I Future work will investigate the uses for proof transformation
methods, cut introduction, and induction theorem proving
based on tree grammar construction and minimization.

slide 20/21

The End

Thank you for your time!

slide 21/21

