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Transforming Sequences of Proofs

- A sequences of proofs was used to analyze Fürstenberg’s proof
of the infinitude of primes [Baaz et al. 2008].

- Each proof in the schema assumed a finite number of primes
exists.

- A uniform structure indexed by the number of assumed primes
was presented and used for the analysis.

- Proof Schema are a formal description of this representation.

- The uniform structure is a set of proofs containing Links,
non-tautological axioms.

- Certain restrictions on links guarantee sound construction of
proof schema
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Proof Schema as an Interpretation of Induction

- While initial work considered only a fragment of arithmetic,
Schematic construction for Peano arithmetic are possible [
Cerna & Lolic , 2018].

⇒

⇓

⇓ α−2 times

− The proof is indexed by α.

− Instantiating α results in an LK-proof .

− Formally a proof pair 〈ϕ(0), ϕ(n + 1)〉.
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Sound Construction: The S iLK-Calculus

I The restrictions on links guaranteeing sound construction can
be internalized by extending the calculus.

I Instead of sequents we consider sequent pairs ( > : S ) or
( S′ : [ S ] ) which can be open or closed.

I the left sequent of the component pair is dependent on the
right sequent in the it defines its closure condition.

I Closure defines soundness, links alter the closure conditions
through the following rules.

slide 4/21



S iLK-Calculus: Linking Rules

Table: The linking rules of the S iLK-calculus. For the other rules of the
S iLK-Calculus see the Tableaux paper [Cerna & Lettmann 2017]

( > : [ (Π ` ∆) [n \ 0] ] ) , Γ|Π̇
�(

(Π `(n+1) ∆) [x̄ \ t̄] : [ (Π ` ∆) [n \ 0] ]
)
, Γ|Π̇

( > : [ S ] ) , Γ|∆̇| ( [ (Λ ` Γ) [n \ h(n)] ] : [ R ] ) |Π̇ y(
(Λ `f (n) Γ) [n \ g(n)] [ȳ \ t̄] : [ S ]

)
, Γ|Π̇′
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S iLK-Proof

Equational theory:

E ≡ {f̂ 0(x) = x ; f̂ s(n)(x) = f f̂ n(x)}

Abbreviations:

∆ ≡ P(0),∀x .P(x)→ P(f (x)) and S ≡ ∆ ` P(f̂ 0(0))

slide 6/21



S iLK-Proof

Ax1 : r
( > : P(0) ` P(0) ) |

Ebc1(
> : P(0) ` P(f̂ 0(0))

)
|

(w : l)bc1(
> : P(0), ∀x.P(x)→ P(f (x)) ` P(f̂ 0(0))

)
|

clbc(
> : [∆ ` P(f̂ 0(0)) ]

)
|

Ax : l(
P(f f̂ n(0)) `s(n) P(f f̂ n(0)) : [ S ]

)
|

br
( > : [ S ] ) ,

(
P(f f̂ n(0)) `s(n) P(f f̂ n(0)) : [ S ]

)
|

�(
∆ `s(n) P(f̂ n(0)) : [ S ]

)
,
(

P(f f̂ n(0)) `s(n) P(f f̂ n(0)) : [ S ]
)
|

(→: l)sc2(
∆, P(f̂ n(0))→ P(f f̂ n(0)) `s(n) P(f f̂ n(0)) : [ S ]

)
|

(∀ : l)sc1(
∆, ∀x.P(x)→ P(f (x)) `s(n) P(f̂ s(n)(0)) : [ S ]

)
|

(c : l)sc1(
∆ `s(n) P(f̂ s(n)(0)) : [ S ]

)
|

clsc(
[ ∆ ` P(f̂ s(n)(0)) ] : [ S ]

)
|
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Interpreting a Closed Set of Components

I A closed set of components, i.e. a proof schema can be
interpreted as a fusion of multiple inductions [ Gentzen, 1969].

I However, Closed Set of Components have a so called leading
component has evidenced by Q0 on the right.

m∧
i=0

I(Si ) ∧ ∀.x
( m∧

i=0

(
I(Qi [n \ x ])→ I(Qi [n \ (x + 1)])

))
→ ∀x .(I(Q0 [n \ x ]),

I Extension to the proof schema for Peano arithmetic [ Cerna &
Lolic , 2018] is currently being investigated.
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Proof Schema: by comparison

- Unlike formal systems using so called ω-rules, primitive
recursive construction is part of the object language.

- In contrast to cyclic proof formalisms, proofs are not by
infinite descent, i.e. not regular infinite proof trees.

- Essentially proof schemata fall in between these two well
known formalisms.

- The formalism allows easy tracking of formula occurrences.

- The ability to track formula occurrences provides interesting
properties concerning cut-elimination.
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Global versus Local cut-elimination

Local cut-elimination reduces a cut formula’s complexity or its
distance from the leaves.

- Introduced by Gentzen as a method of proving consistency, the
concept has been expanded well beyond the intended scope.

Global cut-elimination produces an intermediate representation
of a formal proofs cut-structure.

- From this intermediate representation a new proof with a
trivial cut-structure is produced.
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CERES: The Characteristic Clause Set representation

cut 

∆`Π

LK-Proof with cuts

cut 

Paths to cut ancestors

CL(A`A)≡{`A}
CL(A`A)≡{A`}
CL(A`A)≡{A`A}

CL

(
∆ ` Π ρ

∆′ ` Π′

)
≡ CL(∆ ` Π)

CL

(
∆ ` Π ∆′ ` Π′

ρ
∆′′ ` Π′′

)
≡

 CL(∆ ` Π) ∪ CL(∆′ ` Π′)

CL(∆ ` Π)× CL(∆′ ` Π′)

- Construct a clause set from the cut ancestors relation.

- Such a clause set is always unsatisfiable.
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Local Cut-elimination and Recursion

- Essentially cut reduction fails once it reaches a link (recursive
call).

(ϕl , t, x̄)

C ,∆ ` Γ

(ϕj , t
′, x̄)

∆′ ` Γ′,C
cut

∆,∆′ ` Γ, Γ′

- Related formalisms eliminate cut from an infinite proof tree.

- One can define a relation between proof schema extending
local cut-elimination and providing a sort of “cut-elimination”
through clausal subsumption [Cerna & Lettmann 2017].
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Clausal analysis: Reductive C.E. and Global Cut Structure

- Baaz and Leitsch, 2006 show how locally reducing cuts
impacts the global cut structure.

- Every proof can be transformed into a proof with a
minimally complex cut structure.

- The extracted clause set, is subsumed by the clause sets of
the more complex cut structure.

cut 

∆`Π

Reduction can result in

cutcut

p

the following proof.

• Local elimination

can result in a multi-

plication of the cuts

• Essentially, the

cut-structure gets

more redundant.

• Redundancy ≡
structural simplic-

ity.
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Clausal Analysis of Proof Schema

Φ Φa ΨΦ′

Φa ↓α Φ′ ↓β
ΘΨ AΨ

ψ Θ(Ψ ↓β) ΘΨ ↓β

ψtop Θ(ψtop) CLt(AΨ) `
(xii)

(ix)

(xi)

(x)

(ix)

(ii)

(iii) (iii)

(iv)

(v)
(v)

(v)

(vi)

(v)

(vi)

(iii)

(vii)

(i)

(viii)

(iii)

(vi)

(ix)
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Global Cut-elimination and Proof Schema

- Recursive clausal analysis provides insight into the structure of
proof schema.

- Though it uses infinite constructions similar to other
formalisms

- Also, a recursive description of formula occurrences is loss.

- In [ Leitsch et al., 2017] a solution is provided which preserves
the occurrence tracking properties.
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A Normal Form

φα
Γ ` ∆,Fα

φ2

Γ ` ∆,F2

φ1

Γ ` ∆,F1

Φ
F1, . . . ,Fα ` (w : l)

F1, . . . ,Fα, Γ ` ∆
(cut + c∗)

Γ,F2, . . . ,Fα ` ∆
(cut + c∗)

Γ,F3, . . . ,Fα ` ∆
...

(cut + c∗)
Γ ` ∆

- The cut structure is turned into a recursively defined formula
based on subformula occurance (BLUE).

- The schema itself is transformed into a schema with the cut
structure as a formula in the consequent (RED).

- The formula is Σ1 and unsatisfiable. The sequence F1, . . . ,Fα
contain the term tuples of a Schematic Herbrand Sequent.
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Example Cut Structure definition: 1-SMA

Top(0) = Next(0) ∧ (0 = f (0) ∨ 0 = f (S(0)))

Top(n + 1) = ∀x((n + 1) = f (S(x)) ∨ f (x) < (n + 1)) ∧
∀x((n + 1) = f (x) ∨ f (x) < (n + 1)) ∧ Next(n + 1)

Next(0) = (¬f (0) < 0) ∧ ∀x((¬0 = f (x)) ∨ (¬0 = f (S(x))))

Next(n + 1) = ∀x((¬(n + 1) = f (x)) ∨ (¬(n + 1) = f (S(x)))) ∧
∀x((¬f (x) < (n + 1)) ∨ n = f (x) ∨ f (x) < n) ∧
∀x((¬f (S(x)) < (n + 1)) ∨ n = f (S(x)) ∨ f (x) < n)

∧Next(n)
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1-SMA: Important Properties

- Unlike the previous examples ∀nTop(n) ` The proof structure
is well understood and the minimal Herbrand sequent is know!
[ D. M. Cerna, 2018, under review]

- Viper can prove this statement in roughly 5 hours

- The superposition prover [ Aravantinos et al. , 2013] Can
prove 1-SMA in roughly 0.01 seconds but cannot prove
k-SMA on theoretic grounds.

- Examples like this may aid our understanding of inductive
theorem proving.
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1-SMA: Proof & Refutation
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Conclusion & Future Work

I Proof schema provide an alternative formalism for reasoning
by induction.
I Generalizations of existing techniques can easily be defined.
I Transformation and Analysis of proofs results in interesting

and complex theorem proving problems.
I Around 60 problems have been added to the TPTP library and

currently working on a submission to TIP.

I Investigation into the relationship between proof Schema and
cyclic proofs is currently of interesting.
I Does each proof schema have a cyclic proof as it’s limit?
I Can schematic proof transformation benefit from cyclic proofs?

I Are there theoretic problems which can benefit from the
formalism?
I For example, [ Cerna & Lolic , 2018] provide a non-trivial

conservative reflection between the schematic and LKcalculus
for Peano arithmetic.
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Thank you for your time.
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