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Transforming Sequences of Proofs

- A sequences of proofs was used to analyze Fiirstenberg’s proof
of the infinitude of primes [Baaz et al. 2008].

- Each proof in the schema assumed a finite number of primes
exists.

- A uniform structure indexed by the number of assumed primes
was presented and used for the analysis.

- Proof Schema are a formal description of this representation.

- The uniform structure is a set of proofs containing Links,
non-tautological axioms.

- Certain restrictions on links guarantee sound construction of
proof schema
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Proof Schema as an Interpretation of Induction

- While initial work considered only a fragment of arithmetic,
Schematic construction for Peano arithmetic are possible |
Cerna & Lolic , 2018].
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- While initial work considered only a fragment of arithmetic,
Schematic construction for Peano arithmetic are possible |
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— Instantiating « results in an LK-proof . : :
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— Formally a proof pair (¢(0), ¢(n + 1)).
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Sound Construction: The S/LK-Calculus

» The restrictions on links guaranteeing sound construction can
be internalized by extending the calculus.

» Instead of sequents we consider sequent pairs ( T : S ) or
(S’ : [S]) which can be open or closed.

> the left sequent of the component pair is dependent on the
right sequent in the it defines its closure condition.

» Closure defines soundness, links alter the closure conditions
through the following rules.
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SiLK-Calculus: Linking Rules

Table: The linking rules of the SiLK-calculus. For the other rules of the
SiLK-Calculus see the Tableaux paper [Cerna & Lettmann 2017]

(T : [(MEA)[\OI]), T _
((MEDA) RN - [(MEA)[n\0]]), T

(T [S1).MAIC[(AET)[n\ h(n)]] : [R_])H;I ~
((AE D) [n\gn)]y\T = [S]).TIV
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SiLK-Proof

Equational theory:

—

€ = {fO(x) = x; F((x) = FF(x)}

Abbreviations:

—

A = P(0),Vx.P(x) — P(f(x)) and S = A+ P(f°(0))
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SiLK-Proof
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Interpreting a Closed Set of Components

» A closed set of components, i.e. a proof schema can be
interpreted as a fusion of multiple inductions [ Gentzen, 1969].

» However, Closed Set of Components have a so called leading
component has evidenced by Qg on the right.

m

AZS) AYx( A (T(Qi I\ X)) = Z(Qi 0\ (x+ 1)) ) = vx(Z(Qo [\ x]),
i=0

i=0
» Extension to the proof schema for Peano arithmetic [ Cerna &
Lolic , 2018] is currently being investigated.
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Proof Schema: by comparison

- Unlike formal systems using so called w-rules, primitive
recursive construction is part of the object language.

- In contrast to cyclic proof formalisms, proofs are not by
infinite descent, i.e. not regular infinite proof trees.

- Essentially proof schemata fall in between these two well
known formalisms.

- The formalism allows easy tracking of formula occurrences.

- The ability to track formula occurrences provides interesting
properties concerning cut-elimination.
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Global versus Local cut-elimination

Local cut-elimination reduces a cut formula’'s complexity or its
distance from the leaves.

- Introduced by Gentzen as a method of proving consistency, the
concept has been expanded well beyond the intended scope.

slide 10/21



Global versus Local cut-elimination

Local cut-elimination reduces a cut formula’'s complexity or its
distance from the leaves.

- Introduced by Gentzen as a method of proving consistency, the
concept has been expanded well beyond the intended scope.

Global cut-elimination produces an intermediate representation
of a formal proofs cut-structure.

- From this intermediate representation a new proof with a
trivial cut-structure is produced.
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CERES: The Characteristic Clause Set representation
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CL(AFA)={-A}
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- Construct a clause set from the cut ancestors relation.

- Such a clause set is always unsatisfiable.
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Local Cut-elimination and Recursion

- Essentially cut reduction fails once it reaches a link (recursive

call).
Jent®) (e thR)
C.AFT AFT,C
ANFET,T cut

- Related formalisms eliminate cut from an infinite proof tree.

- One can define a relation between proof schema extending
local cut-elimination and providing a sort of “cut-elimination”
through clausal subsumption [Cerna & Lettmann 2017].
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Clausal analysis: Reductive C.E. and Global Cut Structure

- Baaz and Leitsch, 2006 show how locally reducing cuts
impacts the global cut structure.

- Every proof can be transformed into a proof with a
minimally complex cut structure.

- The extracted clause set, is subsumed by the clause sets of
the more complex cut structure.

Reduction can result in
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Clausal Analysis of Proof Schema
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Global Cut-elimination and Proof Schema

Recursive clausal analysis provides insight into the structure of
proof schema.

Though it uses infinite constructions similar to other
formalisms

- Also, a recursive description of formula occurrences is loss.

- In [ Leitsch et al., 2017] a solution is provided which preserves
the occurrence tracking properties.
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A Normal Form

[0)
®1 Fi,...,Fo (W/)
o (AR A FalFA ")
AR FFh. .  F.FA c
; M.  F. A (cut +c7)
FEAF,

A — (cut + c*)
- The cut structure is turned into a recursively defined formula

based on subformula occurance (BLUE).

- The schema itself is transformed into a schema with the cut
structure as a formula in the consequent (RED).

- The formula is ¥; and unsatisfiable. The sequence Fq,..., F,
contain the term tuples of a Schematic Herbrand Sequent.

slide 16/21



Example Cut Structure definition: 1-SMA

Top(0)

Top(n+1)

Next(0)

Next(n+ 1)
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1-SMA: Important Properties

- Unlike the previous examples VnTop(n) = The proof structure
is well understood and the minimal Herbrand sequent is know!
[ D. M. Cerna, 2018, under review|

- Viper can prove this statement in roughly 5 hours

- The superposition prover [ Aravantinos et al. , 2013] Can
prove 1-SMA in roughly 0.01 seconds but cannot prove
k-SMA on theoretic grounds.

- Examples like this may aid our understanding of inductive
theorem proving.

slide 18/21



c
(@)
B
(@]
-
=
(S
Q
o
3
(.
(@)
(©)
-
o
<
=
(0p)]
—

slide 19/21



Conclusion & Future Work

» Proof schema provide an alternative formalism for reasoning
by induction.
» Generalizations of existing techniques can easily be defined.
» Transformation and Analysis of proofs results in interesting
and complex theorem proving problems.
» Around 60 problems have been added to the TPTP library and
currently working on a submission to TIP.
> Investigation into the relationship between proof Schema and
cyclic proofs is currently of interesting.
» Does each proof schema have a cyclic proof as it's limit?
» Can schematic proof transformation benefit from cyclic proofs?
> Are there theoretic problems which can benefit from the
formalism?
» For example, [ Cerna & Lolic , 2018] provide a non-trivial
conservative reflection between the schematic and LKcalculus
for Peano arithmetic.

slide 20/21



Thank you for your time.
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