
An Ordering for Flexible and Finite
Representation of Infinite Sequences of Proofs

David M. Cerna
Recent work with Alexander Leitsch and Anela Lolic

October 23rd, 2019

slide 1/49

An Introduction

I This presentation is similar to the previous two in that:

1) Motivated by the study of cut-elimination.
2) Connected to our investigations of Herbrand’s theorem in the

presence of induction through schematic proof representation.

I Unlike the previous talks we are going to focus on schematic
proof representation.

I We introduce an ordering developed specifically for finitely
representing infinite sequences of proofs.

I Furthermore, we discuss uses beyond proof representation.

I But first let’s cover some background material.

slide 2/49

cut-elimination on inductive proofs?

I Induction is of crucial importance in mathematics.

I Tere exist forms of cut-elimination for inductive proofs.

I But Herbrand’s theorem fails.

I solution: Replace inductive proofs by proof schemata and
compute Herbrand systems.

I The analysis of Fürstenberg’s prime proof by CERES was
based on proof schemata.

slide 3/49

Inductive proofs: extraction of Herbrand sequents?

Example: Let us consider the sequent S :

∀x(P(x)→ P(f (x))) ` ∀n∀x((P(ĝ(n, x))→ Q(x))→ (P(x)→ Q(x)))

where f is a unary function symbol and

E = {ĝ(0, x) = x , ĝ(s(n), x) = f (ĝ(n, x))}.

The skolemized version:

S ′ : (∀x)(P(x)→ P(f (x))) ` (P(ĝ(n0, c))→ Q(c))→ (P(c)→ Q(c)).

Obviously, S ′ cannot be proven without induction - S ′ does not
have a Herbrand sequent (w.r.t. the theory E) .

I S ′ can be proven by induction - you prove the lemma

ψ : (∀x)(P(x)→ P(f (x))) ` ∀n∀x(P(x)→ P(ĝ(n, x)).

slide 4/49

Proof Schemata Define Herbrand Schemata

ψ(0) =

P(ĝ(0, x0)) ` P(ĝ(0, x0))
E

P(x0) ` P(ĝ(0, x0))
→ : r

` P(x0)→ P(ĝ(0, x0))
∀ : r` (∀x)(P(x)→ P(ĝ(0, x)))

w : l
(∀x)(P(x)→ P(f (x))) ` (∀x)(P(x)→ P(ĝ(0, x)))

and ψ(k + 1) is:

(ψ(k))

(∀x)(P(x)→ P(f (x))) ` (∀x)(P(x)→ P(ĝ(k̄, x))) (1)
cut, c : l

(∀x)(P(x)→ P(f (x))) ` (∀x)(P(x)→ P(ĝ(s(k̄), x)))

slide 5/49

Proof Schemata Define Herbrand Schemata

where (1) is:

P(xk+1) ` P(xk+1)

P(ĝ(k̄, xk+1)) ` P(ĝ(k̄, xk+1))

P(ĝ(s(k̄), xk+1)) ` P(ĝ(s(k̄), xk+1))
E

P(f (ĝ(k̄, xk+1))) ` P(ĝ(s(k̄), xk+1))
→ : l

P(ĝ(k̄, xk+1)), P(ĝ(k̄, xk+1))→ P(f (ĝ(k̄, xk+1))) ` P(ĝ(s(k̄), xk+1))
∀ : l

P(ĝ(k̄, xk+1)), (∀x)(P(x)→ P(f (x))) ` P(ĝ(s(k̄), xk+1))
→ : l

P(xk+1), P(xk+1)→ P(ĝ(k̄, xk+1)), (∀x)(P(x)→ P(f (x))) ` P(ĝ(s(k̄), xk+1))
→ : r

P(xk+1)→ P(ĝ(k̄, xk+1)), (∀x)(P(x)→ P(f (x))) ` P(xk+1)→ P(ĝ(s(k̄), xk+1))
∀ : l

(∀x)(P(x)→ P(ĝ(k̄, x))), (∀x)(P(x)→ P(f (x))) ` P(xk+1)→ P(ĝ(s(k̄), xk+1))
∀ : r

(∀x)(P(x)→ P(ĝ(k̄, x))), (∀x)(P(x)→ P(f (x))) ` (∀x)(P(x)→ P(ĝ(s(k̄), x)))

slide 6/49

Proof Schemata Define Herbrand Schemata

and define ϕ(n) =

(ψ(n))

(∀x)(P(x)→ P(f (x))) ` C(n)

(χ(n))

C(n) ` (P(ĝ(n̄, c))→ Q(c))→ (P(c)→ Q(c))
cut

(∀x)(P(x)→ P(f (x))) ` (P(ĝ(n̄, c))→ Q(c))→ (P(c)→ Q(c))

where C (n) = (∀x)(P(x)→ P(ĝ(n̄, x))) and χ(n) is:

P(c) ` P(c)

P(ĝ(n̄, c)) ` P(ĝ(n̄, c)) Q(c) ` Q(c)
→ : l

P(ĝ(n̄, c))→ Q(c),P(ĝ(n̄, c)) ` Q(c)
→ : l

P(c),P(ĝ(n̄, c))→ Q(c),P(c)→ P(ĝ(n̄, c)) ` Q(c)
→ : r

P(ĝ(n̄, c))→ Q(c),P(c)→ P(ĝ(n̄, c)) ` P(c)→ Q(c)
→ : r

P(c)→ P(ĝ(n̄, c)) ` (P(ĝ(n̄, c))→ Q(c))→ (P(c)→ Q(c))
∀ : l

(∀x)(P(x)→ P(ĝ(n̄, x))) ` (P(ĝ(n̄, c))→ Q(c))→ (P(c)→ Q(c))

slide 7/49

proof schemata define Herbrand schemata

ψ(n)

∀x(P(x)→ P(f (x))) ` C

χ(n)

C ` (P(ĝ(n̄, c))→ Q(c))→ (P(c)→ Q(c))
cut

Sn : ∀x(P(x)→ P(f (x))) ` (P(ĝ(n̄, c))→ Q(c))→ (P(c)→ Q(c))

for C = ∀x(P(x)→ P(ĝ(n̄, x)))

For every n we get (by cut-elimination) a Herbrand sequent S∗n
(valid in E = {ĝ(0, x) = x , ĝ(s(n), x) = f (ĝ(n, x))}):

S∗0 = ` (P(ĝ(0, c))→ Q(c))→ (P(c)→ Q(c)),

S∗n+1 = (P(x)→ P(f (x)))θ0, . . . , (P(x)→ P(f (x))θn `
P(ĝ(n + 1, c))→ Q(c))→ (P(c)→ Q(c)).

for θ0 = {x ← ĝ(n, 0)}, . . . , θn = {x ← ĝ(n, c)}
Herbrand substitution set → Herbrand system:

Θ0 = ∅, Θn+1 = Θn ∪ {θn}.
slide 8/49

Beyond the Basic Example

I The existing schematic version of CERES is defined for proof
schema with a single free-parameter.

I Constructing proof schema which use more than one
free-parameter is possible.

I It can also be shown that multi-parameter proof schemata are
provability equivalent to the LK-calculus for Peano Arithmetic
[Cerna,2018] (If we allow quantification of parameters).

I Though, there does not exists a corresponding CERES
method. This is currently being investigated.

slide 9/49

Quick Guide to Schematic Proof Construction

ϕ has free variables instantiated
by σ to numerals.

σ > σ′ but no order relation
between σ and τ .

ϕ cannot be referenced in ψ, and
ψ cannot be referenced in ν, etc.

∆σ`Πσ

ϕ

∆1σ
′`Π1σ

′ ∆2τ`Π2τ

∆1`Π1

ϕ

∆2`Π2

ψ

∆3`Π3

χ

∆4`Π4

ν

∆5`Π5

µ

ϕ ψ

ψχν Nested proof
calls allowed.

µ

µ µ is the least proof and
only references itself.

ϕ

ϕBase

ϕBase cannot
make proof
calls.

slide 10/49

Quick Guide to Schematic Proof Construction

ϕ has free variables instantiated
by σ to numerals.

σ > σ′ but no order relation
between σ and τ .

ϕ cannot be referenced in ψ, and
ψ cannot be referenced in ν, etc.

∆σ`Πσ

ϕ

∆1σ
′`Π1σ

′ ∆2τ`Π2τ

∆1`Π1

ϕ

∆2`Π2

ψ

∆3`Π3

χ

∆4`Π4

ν

∆5`Π5

µ

ϕ ψ

ψχν Nested proof
calls allowed.

µ

µ µ is the least proof and
only references itself.

ϕ

ϕBase

ϕBase cannot
make proof
calls.

slide 10/49

Quick Guide to Schematic Proof Construction

ϕ has free variables instantiated
by σ to numerals.

σ > σ′ but no order relation
between σ and τ .

ϕ cannot be referenced in ψ, and
ψ cannot be referenced in ν, etc.

∆σ`Πσ

ϕ

∆1σ
′`Π1σ

′ ∆2τ`Π2τ

∆1`Π1

ϕ

∆2`Π2

ψ

∆3`Π3

χ

∆4`Π4

ν

∆5`Π5

µ

ϕ ψ

ψχν Nested proof
calls allowed.

µ

µ µ is the least proof and
only references itself.

ϕ

ϕBase

ϕBase cannot
make proof
calls.

slide 10/49

Quick Guide to Schematic Proof Construction

ϕ has free variables instantiated
by σ to numerals.

σ > σ′ but no order relation
between σ and τ .

ϕ cannot be referenced in ψ, and
ψ cannot be referenced in ν, etc.

∆σ`Πσ

ϕ

∆1σ
′`Π1σ

′ ∆2τ`Π2τ

∆1`Π1

ϕ

∆2`Π2

ψ

∆3`Π3

χ

∆4`Π4

ν

∆5`Π5

µ

ϕ ψ

ψχν Nested proof
calls allowed.

µ

µ µ is the least proof and
only references itself.

ϕ

ϕBase

ϕBase cannot
make proof
calls.

slide 10/49

Quick Guide to Schematic Proof Construction

ϕ has free variables instantiated
by σ to numerals.

σ > σ′ but no order relation
between σ and τ .

ϕ cannot be referenced in ψ, and
ψ cannot be referenced in ν, etc.∆σ`Πσ

ϕ

∆1σ
′`Π1σ

′ ∆2τ`Π2τ

∆1`Π1

ϕ

∆2`Π2

ψ

∆3`Π3

χ

∆4`Π4

ν

∆5`Π5

µ

ϕ ψ

ψχν Nested proof
calls allowed.

µ

µ µ is the least proof and
only references itself.

ϕ

ϕBase

ϕBase cannot
make proof
calls.

slide 10/49

Quick Guide to Schematic Proof Construction

ϕ has free variables instantiated
by σ to numerals.

σ > σ′ but no order relation
between σ and τ .

ϕ cannot be referenced in ψ, and
ψ cannot be referenced in ν, etc.∆σ`Πσ

ϕ

∆1σ
′`Π1σ

′ ∆2τ`Π2τ

∆1`Π1

ϕ

∆2`Π2

ψ

∆3`Π3

χ

∆4`Π4

ν

∆5`Π5

µ

ϕ ψ

ψχν Nested proof
calls allowed.

µ

µ µ is the least proof and
only references itself.

ϕ

ϕBase

ϕBase cannot
make proof
calls.

slide 10/49

Quick Guide to Schematic Proof Construction

ϕ has free variables instantiated
by σ to numerals.

σ > σ′ but no order relation
between σ and τ .

ϕ cannot be referenced in ψ, and
ψ cannot be referenced in ν, etc.∆σ`Πσ

ϕ

∆1σ
′`Π1σ

′ ∆2τ`Π2τ

∆1`Π1

ϕ

∆2`Π2

ψ

∆3`Π3

χ

∆4`Π4

ν

∆5`Π5

µ

ϕ ψ

ψχν Nested proof
calls allowed.

µ

µ µ is the least proof and
only references itself.

ϕ

ϕBase

ϕBase cannot
make proof
calls.

slide 10/49

Problems with Schematic proof Construction

I While the above schematic proof construction works and is
provability equivalent to Peano arithmetic, it does not help
much with proof analysis.

I A sequence of post-transformation proofs may require a more
expressive language then the one outlined above to describe it.

I Let us consider cut-elimination for schematic proofs before
looking into the properties of this more expressive language.

slide 11/49

Global versus Local cut-elimination

Local cut-elimination reduces a cut formula’s complexity or its
distance from the leaves.

- Introduced by Gentzen as a method of proving consistency, the
concept has been expanded well beyond the intended scope.

Global cut-elimination produces an intermediate representation
of a formal proof’s cut-structure.

- From this intermediate representation a new proof with a
trivial cut-structure is produced.

slide 12/49

Global versus Local cut-elimination

Local cut-elimination reduces a cut formula’s complexity or its
distance from the leaves.

- Introduced by Gentzen as a method of proving consistency, the
concept has been expanded well beyond the intended scope.

Global cut-elimination produces an intermediate representation
of a formal proof’s cut-structure.

- From this intermediate representation a new proof with a
trivial cut-structure is produced.

slide 12/49

Local Cut-elimination and Schematic Proofs

- No cut reduction rules exists for links.

(ϕ, · · ·)
C ,∆ ` Γ

(ϕj , · · ·)
∆′ ` Γ′,C

cut
∆,∆′ ` Γ, Γ′

- When the call structure is non-recursive proof references can
just be removed.

- However, recursive call structures block reduction of a cut
formula’s rank.

- Using a global approach we can extract the cut-structure as
an unsatisfiable negation normal form inductive definition.

slide 13/49

Global Cut-elimination Inductive NNF Definition Extraction

cut

∆`Π

LK-Proof with cuts

cut

Paths to cut ancestors

CL(A`A)≡{A}
CL(A`A)≡{¬A}

CL(A`A)≡{¬A∨A}

CL

(
∆ ` Π ρ

∆′ ` Π′

)
≡ CL(∆ ` Π)

CL

(
∆ ` Π ∆′ ` Π′ ρ

∆′′ ` Π′′

)
≡

 CL(∆ ` Π) ∧ CL(∆′ ` Π′)

CL(∆ ` Π) ∨ CL(∆′ ` Π′)

- Proof references are denoted by defined symbols.

- Such an inductive NNF definition is always unsatisfiable.

- We need to refute this inductive NNF in a finitely
representable way in-order to extract Herbrand information.

slide 14/49

Global Cut-elimination Inductive NNF Definition Extraction

cut

∆`Π

LK-Proof with cuts

cut

Paths to cut ancestors

CL(A`A)≡{A}
CL(A`A)≡{¬A}

CL(A`A)≡{¬A∨A}

CL

(
∆ ` Π ρ

∆′ ` Π′

)
≡ CL(∆ ` Π)

CL

(
∆ ` Π ∆′ ` Π′ ρ

∆′′ ` Π′′

)
≡

 CL(∆ ` Π) ∧ CL(∆′ ` Π′)

CL(∆ ` Π) ∨ CL(∆′ ` Π′)

- Proof references are denoted by defined symbols.

- Such an inductive NNF definition is always unsatisfiable.

- We need to refute this inductive NNF in a finitely
representable way in-order to extract Herbrand information.

slide 14/49

Global Cut-elimination Inductive NNF Definition Extraction

cut

∆`Π

LK-Proof with cuts

cut

Paths to cut ancestors

CL(A`A)≡{A}
CL(A`A)≡{¬A}

CL(A`A)≡{¬A∨A}

CL

(
∆ ` Π ρ

∆′ ` Π′

)
≡ CL(∆ ` Π)

CL

(
∆ ` Π ∆′ ` Π′ ρ

∆′′ ` Π′′

)
≡

 CL(∆ ` Π) ∧ CL(∆′ ` Π′)

CL(∆ ` Π) ∨ CL(∆′ ` Π′)

- Proof references are denoted by defined symbols.

- Such an inductive NNF definition is always unsatisfiable.

- We need to refute this inductive NNF in a finitely
representable way in-order to extract Herbrand information.

slide 14/49

Global Cut-elimination Inductive NNF Definition Extraction

cut

∆`Π

LK-Proof with cuts

cut

Paths to cut ancestors

CL(A`A)≡{A}
CL(A`A)≡{¬A}

CL(A`A)≡{¬A∨A}

CL

(
∆ ` Π ρ

∆′ ` Π′

)
≡ CL(∆ ` Π)

CL

(
∆ ` Π ∆′ ` Π′ ρ

∆′′ ` Π′′

)
≡

 CL(∆ ` Π) ∧ CL(∆′ ` Π′)

CL(∆ ` Π) ∨ CL(∆′ ` Π′)

- Proof references are denoted by defined symbols.

- Such an inductive NNF definition is always unsatisfiable.

- We need to refute this inductive NNF in a finitely
representable way in-order to extract Herbrand information.

slide 14/49

Global Cut-elimination Inductive NNF Definition Extraction

cut

∆`Π

LK-Proof with cuts

cut

Paths to cut ancestors

CL(A`A)≡{A}
CL(A`A)≡{¬A}

CL(A`A)≡{¬A∨A}

CL

(
∆ ` Π ρ

∆′ ` Π′

)
≡ CL(∆ ` Π)

CL

(
∆ ` Π ∆′ ` Π′ ρ

∆′′ ` Π′′

)
≡

 CL(∆ ` Π) ∧ CL(∆′ ` Π′)

CL(∆ ` Π) ∨ CL(∆′ ` Π′)

- Proof references are denoted by defined symbols.

- Such an inductive NNF definition is always unsatisfiable.

- We need to refute this inductive NNF in a finitely
representable way in-order to extract Herbrand information.

slide 14/49

Refuting the NNF

I Note that refuting this NNF for every instance is
complexity-wise equivalent to proving the inductive statement
using atomic cuts only.

I Given that cut-elimination for calculi with an induction
inference is usually not possible or not possible while retaining
analyticity this alludes to the difficulty of the problem.

I Let us look at an example before considering how to represent
it’s refutation.

slide 15/49

Eventually Constant Statement (ECS)

I Consider a proof schema indexed by n of

∀x
n∨

i=0

f (x) = i ,∆ ` ∃x∀y(x ≤ y → f (x) = f (y))

I using a sequence of Σ2-cuts

∃x∀y(((x ≤ y)⇒ n + 1 = f (y)) ∨ f (y) < n + 1).

I This example was discussed in [Cerna and Leitsch 2016] where
the proof was skolemized resulting in the end sequent

∀x
n∨

i=0

f (x) = i ,∆ ` ∃x(x ≤ g(x)→ f (x) = f (g(x))).

I Note that ∆ contains additional assumptions concerning f .

slide 16/49

The 2-repetition Statement

I As an exercise we can consider what happens when we
interpret g as the successor function

∀x
n∨

i=0

f (x) = i ,∆′ ` ∃x(f (x) = f (suc(x))),

I i.e. what cut formula and which axioms are needed for this
statement to hold. The cut is weaker,

∃x(f (x) = k ∧ f (suc(x)) = k) ∨ ∀x(f (x) < k)

I and the axioms concerning f are simpler

f (suc(x)) < s(k) ` f (suc(x)) = k , f (x) < k

f (x) < s(k) ` f (x) = k , f (x) < k

slide 17/49

The 2-repetition Statement

I A function f : N→ N is said to be 2-repeating if there exists at

least two consecutive values x , y ∈ N s.t. f (x) = f (y).

Assertion (2-repetition)

Every total monotonically decreasing function f : N→ N is at least
2-repeating.

slide 18/49

Analysis of the 2-repetition Statement

I Analysis of ECS was already performed in [Cerna and Leitsch
2016], the 2-repetition Statement is substantially weaker.

I While the inductive superposition prover of N. Peltier cannot
find an invariant for ECS, it can find one for 2-repetition.
[Leitsch et al. 2017] can be used for analysis.

slide 19/49

The k-repetition Statement

I A function f : N→ N is said to be k-repeating if there exists at

least k consecutive values x1, · · · , xk ∈ N s.t. f (x1) = · · · = f (xk).

Assertion (k-repetition)

Every total monotonically decreasing function f : N→ N is at least
k-repeating.

Need to check all possible function
constructions of which there are
factorially many.

slide 20/49

Cut Structure of k-Repetition as an Inductive Definition

Ô(n,m) =⇒D̂(n,m) ∧ P̂(n,m)

D̂(n, 0) =⇒∀x(f (x) = Ŝ(n, a) ∨ f (x) < Ŝ(n, a))

D̂(n, s(m)) =⇒∀x(f (Ŝ(s(m), x)) = Ŝ(n, a) ∨ f (x) < Ŝ(n, a)) ∧ D̂(n,m)

P̂(0,m) =⇒∀x(Ĉ (x , 0,m)) ∧ f (a) 6< 0

P̂(s(n),m) =⇒(∀x(Ĉ (x , s(n),m)) ∧ (T̂ (n,m)) ∧ P̂(n,m)

Ĉ (y , n, 0) =⇒f (y) 6= Ŝ(n, a)

Ĉ (y , n, s(m)) =⇒f (Ŝ(s(m), y)) 6= Ŝ(n, a) ∨ Ĉ (y , n,m)

T̂ (n, 0) =⇒∀x(f (x) 6< Ŝ(s(n), a) ∨ f (x) = Ŝ(n, a) ∨ f (x) < Ŝ(n, a))

T̂ (n, s(m)) =⇒∀x(f (Ŝ(s(m), x)) 6< Ŝ(s(n), a) ∨ f (Ŝ(s(m), x)) = Ŝ(n, a) ∨
f (x) < Ŝ(n, a)) ∧ T̂ (n,m)

Ŝ(0, y) =⇒y

Ŝ(s(n), y) =⇒suc(Ŝ(s(n), y))

slide 21/49

Analysis of the k-repetition Statement

I The k-repetition statement has two independent parameters
which is beyond the capabilities of N. Peltier’s superposition
prover and thus beyond the analysis method of [Leitsch et al.
2017]

I While two parameters need not be problematic, in the case of
the k-repetition nested loops are needed to build the
refutation.

I The schematic proof construction method discussed earlier
cannot describe such a refutation.

I A more flexible proof construction mechanism is needed.

slide 22/49

Call Structure of the Refutation

δ0

δ6

δ4δ1

δ2 δ3

δ5

S1,S2

S3
S1,S2

S5

S5,S6

S5

S6

S7

S7,S8

S7, S8

S8

S7

S8

S7

S5

S5

S6

S5

slide 23/49

A more flexible formalism

I Rather than developing a formalism for proof schema in
particular we provide a general scaffolding for recursive object
construction.
I For example, Proof schemata, Resolution Refutations,

Schematic Unifiers, Herbrand Systems, etc.

I The scaffolding provides a “structural semantics” for finite
representability.

I This scaffolding may be decorated by objects which match its
structure.

I So what is this scaffolding made of?

slide 24/49

Junctions

(
δ,
−→
t n

)
I The above object is a junction, δ is a symbol from a set of

symbols ∆, and
−→
t n is a tuple of numeric terms which may

contain parameters and primitive recursive functions.

I Junctions whose tuples of numeric terms are of the same
length are well ordered by <n.

I Junctions differing in tuple length must have different
symbols.

I Junctions can also be well-ordered by the symbols <∆ (by
tuple size).

I We say p C q if either q <n p or p <∆ q.

I Note that C is not well founded.
slide 25/49

Junctions

(δ, n,m)

(δ2, n, s(m))

(δ2, n, s(m), k , 0)

(δ3, n, s(m), k , 0)

I The first two are valid Junctions.

I The third is not, same symbol as the second but different
tuple length

I The fourth is also valid.

I Note, have an infinite set of parameters P, a parameter
assignment σ assigns a numeral to each parameter.

I The set of all parameter assignments is S.

slide 26/49

Flows

PS∗ =


(A1,S1)
(A2,S2)
· · ·

(An,Sn)


I The Ai are sets of junctions.

I Let S be the set of parameter assignments, S∗ is a
partitioning of S into disjoint sets S1 through Sn.

I If σ ∈ Si then PS∗(σ) = Ai

I There is a is special junction [PS∗] s.t.
∀σ ∈ S, [PS∗] ∈ PS∗(σ), The Source of the flow.

I Note, ∀q ∈ Ai , q 6= [PS∗] then [PS∗] C q

slide 27/49

Example Flow

PS∗ =






(δ2, n, k),
(δ1, p̂(n), s(k)),
(δ2, p̂(n), s(k)),
(δ3, p̂(n), s(k))

 ,S1


({

(δ2, n, k),
(δ3, p̂(n), s(k))

}
,S2

)


I S∗ = S1 ∪ S2 where S1 = {σ ∈ S & σ(n) ↓ω> 0} and

S2 = {σ ∈ S & σ(n) ↓ω= 0}.
I If σ ∈ S1 then PS∗(σ) = {(δ2, n, k), (δ1, p̂(n), s(k)),

(δ2, p̂(n), s(k)), (δ3, p̂(n), s(k))}
I [PS∗] = (δ2, n, k)

I (δ2, n, k) C (δ3, p̂(n), s(k)) where p̂ is the predecessor function
and <2 is the lexicographical ordering.

slide 28/49

Connecting flows

I Let PS∗1
and PS∗2

be flows and σ a parameter assignment such
that
I there exists q ∈ PS∗1

(σ) such that
[
PS∗1

]
6= q and

I there exists a parameter assignment θ such that
I qσ =

[
PS∗2

]
θ then

we refer to the flows as linked.

I If a set of flows is completely linked together the result is a
call graph.

slide 29/49

Call graph definition

Definition
A finite set of flows G is referred to as a call graph if for every
PS∗1 ∈ G, S ∈ S∗, σ ∈ S , j ∈ PS∗1 there exists a unique PS∗2 ∈ G
and θ ∈ S s.t. θ([PS∗2]) ↓ω= σ(j) ↓ω. We write flow(j , σ) = PS∗2
and subst(j , σ) = θ.

I Essentially in a call graph every Junction under every
parameter assignment is a the source of some flow.

slide 30/49

Example Call Graph

I G = {P1,P2} is a call graph , where

P1 = {({(δ, n), (δ′, n, p(n), n, 0)},S)}

P2 =


({(δ′, n,m, k ,w), (δ′, n,m, p(k), s(w))},S1) ,

({(δ′, n,m, k,w), (δ′, n, p(m), n,w)},S2) ,
({(δ′, n,m, k ,w)},S3)


I S1 = {σ|σ ∈ S, σ(k) ↓ω> 0},
I S2 = {σ|σ ∈ S, σ(k) ↓ω= 0 & σ(m) ↓ω> 0},
I S3 = {σ|σ ∈ S, σ(k) ↓ω= 0 & σ(m) ↓ω= 0}
I Note that for σ ∈ S3 |P2(σ)| such parameter assignments are

referred to as sinks.

slide 31/49

What does a call Graph define

I Starting from any parameter assignment a call graph provides
a way to compute new parameter assignments until one
reaches a sink.

[σ, subst(j1, σ)] , [subst(j1, σ), subst(j2,subst(j1, σ))] ,

[subst(j2,subst(j1, σ)), subst(j3, subst(j2,subst(j1, σ)))] , · · ·
I Let us consider the above call graph and how we may apply it

to a given parameter assignment.
σ︷ ︸︸ ︷

{n← α1},

θ1︷ ︸︸ ︷{
n← α1 , m← p(α1),

k ← α1 , w ← 0

}
where j1 = (δ′, n, p(n), n, 0), flow(j1, σ) = P2, and
Subst(j1, σ) = θ1.

slide 32/49

What does a call Graph define


θ1︷ ︸︸ ︷{

n← α1 , m← p(α1),
k ← α1,w ← 0

}
,

θ2︷ ︸︸ ︷{
n← α1 , m← p(α1),
k ← p(α1),w ← s(0)

}
where j2 = (δ′, n,m, p(k), s(w)), flow(j2, θ1) = P2, and
Subst(j2, θ1) = θ2.

θ2︷ ︸︸ ︷{
n← α1 , m← p(α1),
k ← p(α1) , w ← s(0)

}
,

θ3︷ ︸︸ ︷{
n← α1 , m← p(α1),

k ← p(p(α1)) , w ← s(s(0))

}
where j3 = (δ′, n,m, p(k), s(w)), flow(j3, θ2) = P2, and
Subst(j3, θ2) = θ3.

...slide 33/49

What does a call Graph define


θ3︷ ︸︸ ︷{

n← α1 , m← p(α1),
k ← pα1(α1) , w ← sα1(0)

}
,

θ4︷ ︸︸ ︷{
n← α1 , m← p(p(α1)),
k ← α1 , w ← sα1(0)

}
j4 = (δ′, n, p(m), n,w), flow(j4, θ4) = P2, and Subst(j4, θ3) = θ4.

θ4︷ ︸︸ ︷{
n← α1 , m← pα1 (α1),

k ← 0 , w ← s(α1)2
(0)

}
Being that we have reached a sink at this Junction flow and Subst
are only defined for the source of P2.

slide 34/49

Call Graph Traces

I The Call graph discussed above results in a simple linear
structure when applied to a parameter assignment.

I In general the application of a call graph to a parameter
assignment may result in branching.

I To capture this structure we defined Call Graph Traces.

I A trace is just a tree where each node is labeled by the
junction the call graph passed during application to a
parameter assignment.

slide 35/49

Example: Branching Call Graph

I Consider the call graph G = {P1,P2} where the flows are
defined as follows:

P1 =
{

({(δ, n), (δ, p(n)), (δ′, n, n)},S1) , ({(δ, n)}, S2)
}

P2 =
{

({(δ′, n,m), (δ′, n, p(m))}, S ′1) , ({(δ′, n,m)}, S ′2)
}

I S1 = {σ ∈ S & σ(n) ↓ω> 0}
I S2 = {σ ∈ S & σ(n) ↓ω= 0}
I S ′1 = {σ ∈ S & σ(m) ↓ω> 0}
I S ′2 = {σ ∈ S & σ(m) ↓ω= 0}

slide 36/49

Trace for non-branching Call Graph

T (G,P1, {n← 2}) = [(δ, 2),T (G,P2, {n← 2,m← 1, k ← 2,w ← 0})]

T

(
G,P2,

{
n← 2,m← 1,
k ← 2,w ← 0

})
=

[
(δ′, 2, 1, 2, 0),T

(
G,P2,

{
n← 2,m← 1,
k ← 1,w ← 1

})]
T

(
G,P2,

{
n← 2,m← 1,
k ← 1,w ← 1

})
=

[
(δ′, 2, 1, 1, 1),T

(
G,P2,

{
n← 2,m← 1,
k ← 0,w ← 2

})]
T

(
G,P2,

{
n← 2,m← 1,
k ← 0,w ← 2

})
=

[
(δ′, 2, 1, 0, 2),T

(
G,P2,

{
n← 2,m← 0,
k ← 2,w ← 2

})]
T

(
G,P2,

{
n← 2,m← 0,
k ← 2,w ← 2

})
=

[
(δ′, 2, 0, 2, 2),T

(
G,P2,

{
n← 2,m← 0,
k ← 1,w ← 3

})]
T

(
G,P2,

{
n← 2,m← 0,
k ← 1,w ← 3

})
=

[
(δ′, 2, 0, 1, 3),T

(
G,P2,

{
n← 2,m← 0,
k ← 0,w ← 4

})]
T

(
G,P2,

{
n← 2,m← 0,
k ← 0,w ← 4

})
=
[
(δ′, 2, 0, 0, 4), ∅

]
[(δ, 2), [(δ′, 2, 1, 2, 0), [(δ′, 2, 1, 1, 1), [(δ′, 2, 1, 0, 2), [(δ′, 2, 0, 2, 2),

[(δ′, 2, 0, 1, 3), [(δ′, 2, 0, 0, 4), ∅]]]]]]]
slide 37/49

Trace for branching Call Graph

(δ, sα(0))

(δ′, sα(0), sα(0))

(δ′, sα(0), sα−1(0))

...

(δ′, sα(0), 0)

(δ, sα−1(0))

(δ′, sα−1(0), sα−1(0))

(δ′, sα−1(0), sα−2(0))

...

(δ′, sα−1(0), 0)

...

(δ, s1(0))

(δ′, s1(0), s1(0))

(δ′, s1(0), 0)

(δ, s1(0))

slide 38/49

Trace Normalization

I Note that Traces seem to result in finite trees but we also
mentioned that the order C is not well founded.

I Fortunately finite call graphs use a well founded suborder of C

Theorem
Let G be a finite call graph, PS∗ ∈ G a flow, and σ ∈ S a parameter
assignment. Then T (G,PS∗ , σ) always produces a finite trace.

I while this isn’t too surprising from what we have discussed so
far call graphs may contain mutually recursive calls.

I This feature is essential for the refutation of the cut structure
of the k-repetition statement.

slide 39/49

Mutual Calls

C2 =






(δ1, n,m,w , k , r , 0),
(δ1, n,m, p(w), s(k), r , 0),
(δ2, n,m,w , k , p(p(r)), 0),

(δ3, n,m,w , k , p(r), 0)

 ,S5




(δ1, n,m,w , k, r , 0),
(δ4, n,m, 0, k, p(r), 0),

(δ2, n,m, 0, k , p(p(r)), 0)

 ,S6




C3 =






(δ2, n,m,w , k , r , q),
(δ2, n,m,w , , p(r), s(q)),

(δ1, n,m, p(w), s(k), s(r), 0),
(δ3, n,m,w , k, p(r), s(q))

 , S7





(δ2, n,m,w , k , r , q),
(δ1, n,m, p(w), s(k), s(m), 0),

(δ3, n,m,w , k, 0, s(q)),
(δ5, n,m,w , k , 0, s(q))

 ,S8




I S5 = {σ|σ ∈ S , wσ > 0}
I S6 = {σ|σ ∈ S , wσ = 0}
I S7 = {σ|σ ∈ S , rσ > 0}
I S8 = {σ|σ ∈ S , rσ = 0}

slide 40/49

Mutual Calls

C2 =






(δ1, n,m,w , k , r , 0),
(δ1, n,m, p(w), s(k), r , 0),
(δ2, n,m,w , k , p(p(r)), 0),

(δ3, n,m,w , k , p(r), 0)

 ,S5




(δ1, n,m,w , k, r , 0),
(δ4, n,m, 0, k, p(r), 0),

(δ2, n,m, 0, k , p(p(r)), 0)

 ,S6




C3 =






(δ2, n,m,w , k , r , q),
(δ2, n,m,w , , p(r), s(q)),

(δ1, n,m, p(w), s(k), s(r), 0),
(δ3, n,m,w , k, p(r), s(q))

 , S7





(δ2, n,m,w , k , r , q),
(δ1, n,m, p(w), s(k), s(m), 0),

(δ3, n,m,w , k, 0, s(q)),
(δ5, n,m,w , k , 0, s(q))

 ,S8




I S5 = {σ|σ ∈ S , wσ > 0}
I S6 = {σ|σ ∈ S , wσ = 0}
I S7 = {σ|σ ∈ S , rσ > 0}
I S8 = {σ|σ ∈ S , rσ = 0}

slide 41/49

Mutual Calls

C2 =






(δ1, n,m,w , k , r , 0),
(δ1, n,m, p(w), s(k), r , 0),
(δ2, n,m,w , k , p(p(r)), 0),

(δ3, n,m,w , k , p(r), 0)

 ,S5




(δ1, n,m,w , k, r , 0),
(δ4, n,m, 0, k, p(r), 0),

(δ2, n,m, 0, k , p(p(r)), 0)

 ,S6




C3 =






(δ2, n,m,w , k , r , q),
(δ2, n,m,w , , p(r), s(q)),

(δ1, n,m, p(w), s(k), s(r), 0),
(δ3, n,m,w , k, p(r), s(q))

 , S7





(δ2, n,m,w , k , r , q),
(δ1, n,m, p(w), s(k), s(m), 0),

(δ3, n,m,w , k, 0, s(q)),
(δ5, n,m,w , k , 0, s(q))

 ,S8




I S5 = {σ|σ ∈ S , wσ > 0}
I S6 = {σ|σ ∈ S , wσ = 0}
I S7 = {σ|σ ∈ S , rσ > 0}
I S8 = {σ|σ ∈ S , rσ = 0}

slide 42/49

Mutual Calls

C2 =






(δ1, n,m,w , k , r , 0),
(δ1, n,m, p(w), s(k), r , 0),
(δ2, n,m,w , k , p(p(r)), 0),

(δ3, n,m,w , k , p(r), 0)

 ,S5




(δ1, n,m,w , k, r , 0),
(δ4, n,m, 0, k, p(r), 0),

(δ2, n,m, 0, k , p(p(r)), 0)

 ,S6




C3 =






(δ2, n,m,w , k , r , q),
(δ2, n,m,w , , p(r), s(q)),

(δ1, n,m, p(w), s(k), s(r), 0),
(δ3, n,m,w , k, p(r), s(q))

 , S7





(δ2, n,m,w , k , r , q),
(δ1, n,m, p(w), s(k), s(m), 0),

(δ3, n,m,w , k, 0, s(q)),
(δ5, n,m,w , k , 0, s(q))

 ,S8




I S5 = {σ|σ ∈ S , wσ > 0}
I S6 = {σ|σ ∈ S , wσ = 0}
I S7 = {σ|σ ∈ S , rσ > 0}
I S8 = {σ|σ ∈ S , rσ = 0}

slide 43/49

Mutual Calls

C2 =






(δ1, n,m,w , k , r , 0),
(δ1, n,m, p(w), s(k), r , 0),
(δ2, n,m,w , k , p(p(r)), 0),

(δ3, n,m,w , k , p(r), 0)

 ,S5




(δ1, n,m,w , k, r , 0),
(δ4, n,m, 0, k, p(r), 0),

(δ2, n,m, 0, k , p(p(r)), 0)

 ,S6




C3 =






(δ2, n,m,w , k , r , q),
(δ2, n,m,w , , p(r), s(q)),

(δ1, n,m, p(w), s(k), s(r), 0),
(δ3, n,m,w , k, p(r), s(q))

 , S7





(δ2, n,m,w , k , r , q),
(δ1, n,m, p(w), s(k), s(m), 0),

(δ3, n,m,w , k, 0, s(q)),
(δ5, n,m,w , k , 0, s(q))

 ,S8




I S5 = {σ|σ ∈ S , wσ > 0}
I S6 = {σ|σ ∈ S , wσ = 0}
I S7 = {σ|σ ∈ S , rσ > 0}
I S8 = {σ|σ ∈ S , rσ = 0}

slide 44/49

Decorating Traces with Proof Schemata

I Every derivation in a proof schema is associated with a proof
symbol.

I Every derivation is associated with a set of free parameters.

I Every derivation has a set of non-trivial leaves(possibly empty)

I can use these properties to match derivations to flows and
junctions contained in the flows.

slide 45/49

Decorating Traces with Proof Schemata

slide 46/49

Decoration of C2 for partition S5

(δ3, n,m,w, k, pred(r), 0)

` F̂4(X̄, k, 0)
BF̂4r

` f (Ŝ(X3(k, 0)) 6< s(k) ∨ f (X3(k, 0)) < k ∨ f (X3(k, 0)) = k
∨ : r

` f (X3(k, 0)) 6< s(k), f (X3(k, 0)) < k ∨ f (X3(k, 0)) = k
∨ : r

` f (X3(k, 0)) 6< s(k), f (X3(k, 0)) < k, f (X3(k, 0)) = k
¬ : r

f (X3(k, 0)) < s(k) ` f (X3(k, 0)) < k, f (X3(k, 0)) = k

(2)

(δ1, n,m, p(w), s(k), r, 0)

` f (α) < s(k) (2)
Res
({

X3(k, 0)← α
})

` f (α) < k, f (α) = k

(1)

(1)

` f (α) < k, f (α) = k

(δ2, n,m,w, k, p(p(r)), 0)

` f (α) < k, F̂5(α, X̄, k, 0)
BF̂5r

` f (α) < k, f (Ŝ(0, α)) 6= k
BŜr` f (α) < k, f (α) 6= k

¬ : r
f (α) = k ` f (α) < k

Res(∅)
` f (α) < k

(δ1, n,m,w, k, r, 0)

slide 47/49

Conclusion & Future work

I The formalism presented above can be used for finite
representation of the resolution refutation need for proof
analysis using CERES.

I Additionally, we can imagine a reverse resolution calculus
I Given an unsatisfiable recursive clause set does there exists a

refutation of the clause set using the given Call Graph.

This is currently being investigated.

slide 48/49

Thank you for your time.

slide 49/49

