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An Introduction

I This presentation is similar to the previous two in that:

1) Motivated by the study of cut-elimination.
2) Connected to our investigations of Herbrand’s theorem in the

presence of induction through schematic proof representation.

I Unlike the previous talks we are going to focus on schematic
proof representation.

I We introduce an ordering developed specifically for finitely
representing infinite sequences of proofs.

I Furthermore, we discuss uses beyond proof representation.

I But first let’s cover some background material.
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cut-elimination on inductive proofs?

I Induction is of crucial importance in mathematics.

I Tere exist forms of cut-elimination for inductive proofs.

I But Herbrand’s theorem fails.

I solution: Replace inductive proofs by proof schemata and
compute Herbrand systems.

I The analysis of Fürstenberg’s prime proof by CERES was
based on proof schemata.

slide 3/49



Inductive proofs: extraction of Herbrand sequents?

Example: Let us consider the sequent S :

∀x(P(x)→ P(f (x))) ` ∀n∀x((P(ĝ(n, x))→ Q(x))→ (P(x)→ Q(x)))

where f is a unary function symbol and

E = {ĝ(0, x) = x , ĝ(s(n), x) = f (ĝ(n, x))}.

The skolemized version:

S ′ : (∀x)(P(x)→ P(f (x))) ` (P(ĝ(n0, c))→ Q(c))→ (P(c)→ Q(c)).

Obviously, S ′ cannot be proven without induction - S ′ does not
have a Herbrand sequent (w.r.t. the theory E) .

I S ′ can be proven by induction - you prove the lemma

ψ : (∀x)(P(x)→ P(f (x))) ` ∀n∀x(P(x)→ P(ĝ(n, x)).
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Proof Schemata Define Herbrand Schemata

ψ(0) =

P(ĝ(0, x0)) ` P(ĝ(0, x0))
E

P(x0) ` P(ĝ(0, x0))
→ : r

` P(x0)→ P(ĝ(0, x0))
∀ : r` (∀x)(P(x)→ P(ĝ(0, x)))

w : l
(∀x)(P(x)→ P(f (x))) ` (∀x)(P(x)→ P(ĝ(0, x)))

and ψ(k + 1) is:

(ψ(k))

(∀x)(P(x)→ P(f (x))) ` (∀x)(P(x)→ P(ĝ(k̄, x))) (1)
cut, c : l

(∀x)(P(x)→ P(f (x))) ` (∀x)(P(x)→ P(ĝ(s(k̄), x)))
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Proof Schemata Define Herbrand Schemata

where (1) is:

P(xk+1) ` P(xk+1)

P(ĝ(k̄, xk+1)) ` P(ĝ(k̄, xk+1))

P(ĝ(s(k̄), xk+1)) ` P(ĝ(s(k̄), xk+1))
E

P(f (ĝ(k̄, xk+1))) ` P(ĝ(s(k̄), xk+1))
→ : l

P(ĝ(k̄, xk+1)), P(ĝ(k̄, xk+1))→ P(f (ĝ(k̄, xk+1))) ` P(ĝ(s(k̄), xk+1))
∀ : l

P(ĝ(k̄, xk+1)), (∀x)(P(x)→ P(f (x))) ` P(ĝ(s(k̄), xk+1))
→ : l

P(xk+1), P(xk+1)→ P(ĝ(k̄, xk+1)), (∀x)(P(x)→ P(f (x))) ` P(ĝ(s(k̄), xk+1))
→ : r

P(xk+1)→ P(ĝ(k̄, xk+1)), (∀x)(P(x)→ P(f (x))) ` P(xk+1)→ P(ĝ(s(k̄), xk+1))
∀ : l

(∀x)(P(x)→ P(ĝ(k̄, x))), (∀x)(P(x)→ P(f (x))) ` P(xk+1)→ P(ĝ(s(k̄), xk+1))
∀ : r

(∀x)(P(x)→ P(ĝ(k̄, x))), (∀x)(P(x)→ P(f (x))) ` (∀x)(P(x)→ P(ĝ(s(k̄), x)))

slide 6/49



Proof Schemata Define Herbrand Schemata

and define ϕ(n) =

(ψ(n))

(∀x)(P(x)→ P(f (x))) ` C(n)

(χ(n))

C(n) ` (P(ĝ(n̄, c))→ Q(c))→ (P(c)→ Q(c))
cut

(∀x)(P(x)→ P(f (x))) ` (P(ĝ(n̄, c))→ Q(c))→ (P(c)→ Q(c))

where C (n) = (∀x)(P(x)→ P(ĝ(n̄, x))) and χ(n) is:

P(c) ` P(c)

P(ĝ(n̄, c)) ` P(ĝ(n̄, c)) Q(c) ` Q(c)
→ : l

P(ĝ(n̄, c))→ Q(c),P(ĝ(n̄, c)) ` Q(c)
→ : l

P(c),P(ĝ(n̄, c))→ Q(c),P(c)→ P(ĝ(n̄, c)) ` Q(c)
→ : r

P(ĝ(n̄, c))→ Q(c),P(c)→ P(ĝ(n̄, c)) ` P(c)→ Q(c)
→ : r

P(c)→ P(ĝ(n̄, c)) ` (P(ĝ(n̄, c))→ Q(c))→ (P(c)→ Q(c))
∀ : l

(∀x)(P(x)→ P(ĝ(n̄, x))) ` (P(ĝ(n̄, c))→ Q(c))→ (P(c)→ Q(c))
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proof schemata define Herbrand schemata

ψ(n)

∀x(P(x)→ P(f (x))) ` C

χ(n)

C ` (P(ĝ(n̄, c))→ Q(c))→ (P(c)→ Q(c))
cut

Sn : ∀x(P(x)→ P(f (x))) ` (P(ĝ(n̄, c))→ Q(c))→ (P(c)→ Q(c))

for C = ∀x(P(x)→ P(ĝ(n̄, x)))

For every n we get (by cut-elimination) a Herbrand sequent S∗n
(valid in E = {ĝ(0, x) = x , ĝ(s(n), x) = f (ĝ(n, x))}):

S∗0 = ` (P(ĝ(0, c))→ Q(c))→ (P(c)→ Q(c)),

S∗n+1 = (P(x)→ P(f (x)))θ0, . . . , (P(x)→ P(f (x))θn `
P(ĝ(n + 1, c))→ Q(c))→ (P(c)→ Q(c)).

for θ0 = {x ← ĝ(n, 0)}, . . . , θn = {x ← ĝ(n, c)}
Herbrand substitution set → Herbrand system:

Θ0 = ∅, Θn+1 = Θn ∪ {θn}.
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Beyond the Basic Example

I The existing schematic version of CERES is defined for proof
schema with a single free-parameter.

I Constructing proof schema which use more than one
free-parameter is possible.

I It can also be shown that multi-parameter proof schemata are
provability equivalent to the LK-calculus for Peano Arithmetic
[Cerna,2018] (If we allow quantification of parameters).

I Though, there does not exists a corresponding CERES
method. This is currently being investigated.
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Quick Guide to Schematic Proof Construction

ϕ has free variables instantiated
by σ to numerals.

σ > σ′ but no order relation
between σ and τ .

ϕ cannot be referenced in ψ, and
ψ cannot be referenced in ν, etc.

∆σ`Πσ

ϕ

∆1σ
′`Π1σ

′ ∆2τ`Π2τ

∆1`Π1

ϕ

∆2`Π2

ψ

∆3`Π3

χ

∆4`Π4

ν

∆5`Π5

µ

ϕ ψ

ψχν Nested proof
calls allowed.

µ

µ µ is the least proof and
only references itself.

ϕ

ϕBase

ϕBase cannot
make proof
calls.
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Problems with Schematic proof Construction

I While the above schematic proof construction works and is
provability equivalent to Peano arithmetic, it does not help
much with proof analysis.

I A sequence of post-transformation proofs may require a more
expressive language then the one outlined above to describe it.

I Let us consider cut-elimination for schematic proofs before
looking into the properties of this more expressive language.
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Global versus Local cut-elimination

Local cut-elimination reduces a cut formula’s complexity or its
distance from the leaves.

- Introduced by Gentzen as a method of proving consistency, the
concept has been expanded well beyond the intended scope.

Global cut-elimination produces an intermediate representation
of a formal proof’s cut-structure.

- From this intermediate representation a new proof with a
trivial cut-structure is produced.
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Local Cut-elimination and Schematic Proofs

- No cut reduction rules exists for links.

(ϕ, · · · )
C ,∆ ` Γ

(ϕj , · · · )
∆′ ` Γ′,C

cut
∆,∆′ ` Γ, Γ′

- When the call structure is non-recursive proof references can
just be removed.

- However, recursive call structures block reduction of a cut
formula’s rank.

- Using a global approach we can extract the cut-structure as
an unsatisfiable negation normal form inductive definition.
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Global Cut-elimination Inductive NNF Definition Extraction

cut 

∆`Π

LK-Proof with cuts

cut 

Paths to cut ancestors

CL(A`A)≡{A}
CL(A`A)≡{¬A}

CL(A`A)≡{¬A∨A}

CL

(
∆ ` Π ρ

∆′ ` Π′

)
≡ CL(∆ ` Π)

CL

(
∆ ` Π ∆′ ` Π′ ρ

∆′′ ` Π′′

)
≡

 CL(∆ ` Π) ∧ CL(∆′ ` Π′)

CL(∆ ` Π) ∨ CL(∆′ ` Π′)

- Proof references are denoted by defined symbols.

- Such an inductive NNF definition is always unsatisfiable.

- We need to refute this inductive NNF in a finitely
representable way in-order to extract Herbrand information.
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Refuting the NNF

I Note that refuting this NNF for every instance is
complexity-wise equivalent to proving the inductive statement
using atomic cuts only.

I Given that cut-elimination for calculi with an induction
inference is usually not possible or not possible while retaining
analyticity this alludes to the difficulty of the problem.

I Let us look at an example before considering how to represent
it’s refutation.
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Eventually Constant Statement (ECS)

I Consider a proof schema indexed by n of

∀x
n∨

i=0

f (x) = i ,∆ ` ∃x∀y(x ≤ y → f (x) = f (y))

I using a sequence of Σ2-cuts

∃x∀y(((x ≤ y)⇒ n + 1 = f (y)) ∨ f (y) < n + 1).

I This example was discussed in [Cerna and Leitsch 2016] where
the proof was skolemized resulting in the end sequent

∀x
n∨

i=0

f (x) = i ,∆ ` ∃x(x ≤ g(x)→ f (x) = f (g(x))).

I Note that ∆ contains additional assumptions concerning f .
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The 2-repetition Statement

I As an exercise we can consider what happens when we
interpret g as the successor function

∀x
n∨

i=0

f (x) = i ,∆′ ` ∃x(f (x) = f (suc(x))),

I i.e. what cut formula and which axioms are needed for this
statement to hold. The cut is weaker,

∃x(f (x) = k ∧ f (suc(x)) = k) ∨ ∀x(f (x) < k)

I and the axioms concerning f are simpler

f (suc(x)) < s(k) ` f (suc(x)) = k , f (x) < k

f (x) < s(k) ` f (x) = k , f (x) < k
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The 2-repetition Statement

I A function f : N→ N is said to be 2-repeating if there exists at

least two consecutive values x , y ∈ N s.t. f (x) = f (y).

Assertion (2-repetition)

Every total monotonically decreasing function f : N→ N is at least
2-repeating.
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Analysis of the 2-repetition Statement

I Analysis of ECS was already performed in [Cerna and Leitsch
2016], the 2-repetition Statement is substantially weaker.

I While the inductive superposition prover of N. Peltier cannot
find an invariant for ECS, it can find one for 2-repetition.
[Leitsch et al. 2017] can be used for analysis.
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The k-repetition Statement

I A function f : N→ N is said to be k-repeating if there exists at

least k consecutive values x1, · · · , xk ∈ N s.t. f (x1) = · · · = f (xk).

Assertion (k-repetition)

Every total monotonically decreasing function f : N→ N is at least
k-repeating.

Need to check all possible function
constructions of which there are
factorially many.
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Cut Structure of k-Repetition as an Inductive Definition

Ô(n,m) =⇒D̂(n,m) ∧ P̂(n,m)

D̂(n, 0) =⇒∀x(f (x) = Ŝ(n, a) ∨ f (x) < Ŝ(n, a))

D̂(n, s(m)) =⇒∀x(f (Ŝ(s(m), x)) = Ŝ(n, a) ∨ f (x) < Ŝ(n, a)) ∧ D̂(n,m)

P̂(0,m) =⇒∀x(Ĉ (x , 0,m)) ∧ f (a) 6< 0

P̂(s(n),m) =⇒(∀x(Ĉ (x , s(n),m)) ∧ (T̂ (n,m)) ∧ P̂(n,m)

Ĉ (y , n, 0) =⇒f (y) 6= Ŝ(n, a)

Ĉ (y , n, s(m)) =⇒f (Ŝ(s(m), y)) 6= Ŝ(n, a) ∨ Ĉ (y , n,m)

T̂ (n, 0) =⇒∀x(f (x) 6< Ŝ(s(n), a) ∨ f (x) = Ŝ(n, a) ∨ f (x) < Ŝ(n, a))

T̂ (n, s(m)) =⇒∀x(f (Ŝ(s(m), x)) 6< Ŝ(s(n), a) ∨ f (Ŝ(s(m), x)) = Ŝ(n, a) ∨
f (x) < Ŝ(n, a)) ∧ T̂ (n,m)

Ŝ(0, y) =⇒y

Ŝ(s(n), y) =⇒suc(Ŝ(s(n), y))
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Analysis of the k-repetition Statement

I The k-repetition statement has two independent parameters
which is beyond the capabilities of N. Peltier’s superposition
prover and thus beyond the analysis method of [Leitsch et al.
2017]

I While two parameters need not be problematic, in the case of
the k-repetition nested loops are needed to build the
refutation.

I The schematic proof construction method discussed earlier
cannot describe such a refutation.

I A more flexible proof construction mechanism is needed.
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Call Structure of the Refutation

δ0

δ6

δ4δ1

δ2 δ3

δ5

S1,S2

S3
S1,S2

S5

S5,S6

S5

S6

S7

S7,S8

S7, S8

S8

S7

S8

S7

S5

S5

S6

S5
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A more flexible formalism

I Rather than developing a formalism for proof schema in
particular we provide a general scaffolding for recursive object
construction.
I For example, Proof schemata, Resolution Refutations,

Schematic Unifiers, Herbrand Systems, etc.

I The scaffolding provides a “structural semantics” for finite
representability.

I This scaffolding may be decorated by objects which match its
structure.

I So what is this scaffolding made of?
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Junctions

(
δ,
−→
t n

)
I The above object is a junction, δ is a symbol from a set of

symbols ∆, and
−→
t n is a tuple of numeric terms which may

contain parameters and primitive recursive functions.

I Junctions whose tuples of numeric terms are of the same
length are well ordered by <n.

I Junctions differing in tuple length must have different
symbols.

I Junctions can also be well-ordered by the symbols <∆ (by
tuple size).

I We say p C q if either q <n p or p <∆ q.

I Note that C is not well founded.
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Junctions

(δ, n,m)

(δ2, n, s(m))

(δ2, n, s(m), k , 0)

(δ3, n, s(m), k , 0)

I The first two are valid Junctions.

I The third is not, same symbol as the second but different
tuple length

I The fourth is also valid.

I Note, have an infinite set of parameters P, a parameter
assignment σ assigns a numeral to each parameter.

I The set of all parameter assignments is S.
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Flows

PS∗ =


(A1,S1)
(A2,S2)
· · ·

(An,Sn)


I The Ai are sets of junctions.

I Let S be the set of parameter assignments, S∗ is a
partitioning of S into disjoint sets S1 through Sn.

I If σ ∈ Si then PS∗(σ) = Ai

I There is a is special junction [PS∗ ] s.t.
∀σ ∈ S, [PS∗ ] ∈ PS∗(σ), The Source of the flow.

I Note, ∀q ∈ Ai , q 6= [PS∗ ] then [PS∗ ] C q
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Example Flow

PS∗ =






(δ2, n, k),
(δ1, p̂(n), s(k)),
(δ2, p̂(n), s(k)),
(δ3, p̂(n), s(k))

 ,S1


({

(δ2, n, k),
(δ3, p̂(n), s(k))

}
,S2

)


I S∗ = S1 ∪ S2 where S1 = {σ ∈ S & σ(n) ↓ω> 0} and

S2 = {σ ∈ S & σ(n) ↓ω= 0}.
I If σ ∈ S1 then PS∗(σ) = {(δ2, n, k), (δ1, p̂(n), s(k)),

(δ2, p̂(n), s(k)), (δ3, p̂(n), s(k))}
I [PS∗ ] = (δ2, n, k)

I (δ2, n, k) C (δ3, p̂(n), s(k)) where p̂ is the predecessor function
and <2 is the lexicographical ordering.
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Connecting flows

I Let PS∗1
and PS∗2

be flows and σ a parameter assignment such
that
I there exists q ∈ PS∗1

(σ) such that
[
PS∗1

]
6= q and

I there exists a parameter assignment θ such that
I qσ =

[
PS∗2

]
θ then

we refer to the flows as linked.

I If a set of flows is completely linked together the result is a
call graph.
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Call graph definition

Definition
A finite set of flows G is referred to as a call graph if for every
PS∗1 ∈ G, S ∈ S∗, σ ∈ S , j ∈ PS∗1 there exists a unique PS∗2 ∈ G
and θ ∈ S s.t. θ([PS∗2 ]) ↓ω= σ(j) ↓ω. We write flow(j , σ) = PS∗2
and subst(j , σ) = θ.

I Essentially in a call graph every Junction under every
parameter assignment is a the source of some flow.

slide 30/49



Example Call Graph

I G = {P1,P2} is a call graph , where

P1 = {({(δ, n), (δ′, n, p(n), n, 0)},S)}

P2 =


({(δ′, n,m, k ,w), (δ′, n,m, p(k), s(w))},S1) ,

({(δ′, n,m, k,w), (δ′, n, p(m), n,w)},S2) ,
({(δ′, n,m, k ,w)},S3)


I S1 = {σ|σ ∈ S, σ(k) ↓ω> 0},
I S2 = {σ|σ ∈ S, σ(k) ↓ω= 0 & σ(m) ↓ω> 0},
I S3 = {σ|σ ∈ S, σ(k) ↓ω= 0 & σ(m) ↓ω= 0}
I Note that for σ ∈ S3 |P2(σ)| such parameter assignments are

referred to as sinks.
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What does a call Graph define

I Starting from any parameter assignment a call graph provides
a way to compute new parameter assignments until one
reaches a sink.

[σ, subst(j1, σ)] , [subst(j1, σ), subst(j2,subst(j1, σ))] ,

[subst(j2,subst(j1, σ)), subst(j3, subst(j2,subst(j1, σ)))] , · · ·
I Let us consider the above call graph and how we may apply it

to a given parameter assignment.
σ︷ ︸︸ ︷

{n← α1},

θ1︷ ︸︸ ︷{
n← α1 , m← p(α1),

k ← α1 , w ← 0

}
where j1 = (δ′, n, p(n), n, 0), flow(j1, σ) = P2, and
Subst(j1, σ) = θ1.
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What does a call Graph define


θ1︷ ︸︸ ︷{

n← α1 , m← p(α1),
k ← α1,w ← 0

}
,

θ2︷ ︸︸ ︷{
n← α1 , m← p(α1),
k ← p(α1),w ← s(0)

}
where j2 = (δ′, n,m, p(k), s(w)), flow(j2, θ1) = P2, and
Subst(j2, θ1) = θ2.

θ2︷ ︸︸ ︷{
n← α1 , m← p(α1),
k ← p(α1) , w ← s(0)

}
,

θ3︷ ︸︸ ︷{
n← α1 , m← p(α1),

k ← p(p(α1)) , w ← s(s(0))

}
where j3 = (δ′, n,m, p(k), s(w)), flow(j3, θ2) = P2, and
Subst(j3, θ2) = θ3.
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What does a call Graph define


θ3︷ ︸︸ ︷{

n← α1 , m← p(α1),
k ← pα1(α1) , w ← sα1(0)

}
,

θ4︷ ︸︸ ︷{
n← α1 , m← p(p(α1)),
k ← α1 , w ← sα1(0)

}
j4 = (δ′, n, p(m), n,w), flow(j4, θ4) = P2, and Subst(j4, θ3) = θ4.

θ4︷ ︸︸ ︷{
n← α1 , m← pα1 (α1),

k ← 0 , w ← s(α1)2
(0)

}
Being that we have reached a sink at this Junction flow and Subst
are only defined for the source of P2.
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Call Graph Traces

I The Call graph discussed above results in a simple linear
structure when applied to a parameter assignment.

I In general the application of a call graph to a parameter
assignment may result in branching.

I To capture this structure we defined Call Graph Traces.

I A trace is just a tree where each node is labeled by the
junction the call graph passed during application to a
parameter assignment.
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Example: Branching Call Graph

I Consider the call graph G = {P1,P2} where the flows are
defined as follows:

P1 =
{

({(δ, n), (δ, p(n)), (δ′, n, n)},S1) , ({(δ, n)}, S2)
}

P2 =
{

({(δ′, n,m), (δ′, n, p(m))}, S ′1) , ({(δ′, n,m)}, S ′2)
}

I S1 = {σ ∈ S & σ(n) ↓ω> 0}
I S2 = {σ ∈ S & σ(n) ↓ω= 0}
I S ′1 = {σ ∈ S & σ(m) ↓ω> 0}
I S ′2 = {σ ∈ S & σ(m) ↓ω= 0}

slide 36/49



Trace for non-branching Call Graph

T (G,P1, {n← 2}) = [(δ, 2),T (G,P2, {n← 2,m← 1, k ← 2,w ← 0})]

T

(
G,P2,

{
n← 2,m← 1,
k ← 2,w ← 0

})
=

[
(δ′, 2, 1, 2, 0),T

(
G,P2,

{
n← 2,m← 1,
k ← 1,w ← 1

})]
T

(
G,P2,

{
n← 2,m← 1,
k ← 1,w ← 1

})
=

[
(δ′, 2, 1, 1, 1),T

(
G,P2,

{
n← 2,m← 1,
k ← 0,w ← 2

})]
T

(
G,P2,

{
n← 2,m← 1,
k ← 0,w ← 2

})
=

[
(δ′, 2, 1, 0, 2),T

(
G,P2,

{
n← 2,m← 0,
k ← 2,w ← 2

})]
T

(
G,P2,

{
n← 2,m← 0,
k ← 2,w ← 2

})
=

[
(δ′, 2, 0, 2, 2),T

(
G,P2,

{
n← 2,m← 0,
k ← 1,w ← 3

})]
T

(
G,P2,

{
n← 2,m← 0,
k ← 1,w ← 3

})
=

[
(δ′, 2, 0, 1, 3),T

(
G,P2,

{
n← 2,m← 0,
k ← 0,w ← 4

})]
T

(
G,P2,

{
n← 2,m← 0,
k ← 0,w ← 4

})
=
[
(δ′, 2, 0, 0, 4), ∅

]
[(δ, 2), [(δ′, 2, 1, 2, 0), [(δ′, 2, 1, 1, 1), [(δ′, 2, 1, 0, 2), [(δ′, 2, 0, 2, 2),

[(δ′, 2, 0, 1, 3), [(δ′, 2, 0, 0, 4), ∅]]]]]]]
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Trace for branching Call Graph

(δ, sα(0))

(δ′, sα(0), sα(0))

(δ′, sα(0), sα−1(0))

...

(δ′, sα(0), 0)

(δ, sα−1(0))

(δ′, sα−1(0), sα−1(0))

(δ′, sα−1(0), sα−2(0))

...

(δ′, sα−1(0), 0)

...

(δ, s1(0))

(δ′, s1(0), s1(0))

(δ′, s1(0), 0)

(δ, s1(0))
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Trace Normalization

I Note that Traces seem to result in finite trees but we also
mentioned that the order C is not well founded.

I Fortunately finite call graphs use a well founded suborder of C

Theorem
Let G be a finite call graph, PS∗ ∈ G a flow, and σ ∈ S a parameter
assignment. Then T (G,PS∗ , σ) always produces a finite trace.

I while this isn’t too surprising from what we have discussed so
far call graphs may contain mutually recursive calls.

I This feature is essential for the refutation of the cut structure
of the k-repetition statement.
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Mutual Calls

C2 =






(δ1, n,m,w , k , r , 0),
(δ1, n,m, p(w), s(k), r , 0),
(δ2, n,m,w , k , p(p(r)), 0),

(δ3, n,m,w , k , p(r), 0)

 ,S5




(δ1, n,m,w , k, r , 0),
(δ4, n,m, 0, k, p(r), 0),

(δ2, n,m, 0, k , p(p(r)), 0)

 ,S6




C3 =






(δ2, n,m,w , k , r , q),
(δ2, n,m,w , , p(r), s(q)),

(δ1, n,m, p(w), s(k), s(r), 0),
(δ3, n,m,w , k, p(r), s(q))

 , S7





(δ2, n,m,w , k , r , q),
(δ1, n,m, p(w), s(k), s(m), 0),

(δ3, n,m,w , k, 0, s(q)),
(δ5, n,m,w , k , 0, s(q))

 ,S8




I S5 = {σ|σ ∈ S , wσ > 0}
I S6 = {σ|σ ∈ S , wσ = 0}
I S7 = {σ|σ ∈ S , rσ > 0}
I S8 = {σ|σ ∈ S , rσ = 0}
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Mutual Calls

C2 =
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I S7 = {σ|σ ∈ S , rσ > 0}
I S8 = {σ|σ ∈ S , rσ = 0}
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Mutual Calls
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Mutual Calls
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Mutual Calls

C2 =
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Decorating Traces with Proof Schemata

I Every derivation in a proof schema is associated with a proof
symbol.

I Every derivation is associated with a set of free parameters.

I Every derivation has a set of non-trivial leaves(possibly empty)

I can use these properties to match derivations to flows and
junctions contained in the flows.
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Decorating Traces with Proof Schemata
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Decoration of C2 for partition S5

(δ3, n,m,w, k, pred(r), 0)

` F̂4(X̄, k, 0)
BF̂4r

` f (Ŝ(X3(k, 0)) 6< s(k) ∨ f (X3(k, 0)) < k ∨ f (X3(k, 0)) = k
∨ : r

` f (X3(k, 0)) 6< s(k), f (X3(k, 0)) < k ∨ f (X3(k, 0)) = k
∨ : r

` f (X3(k, 0)) 6< s(k), f (X3(k, 0)) < k, f (X3(k, 0)) = k
¬ : r

f (X3(k, 0)) < s(k) ` f (X3(k, 0)) < k, f (X3(k, 0)) = k

(2)

(δ1, n,m, p(w), s(k), r, 0)

` f (α) < s(k) (2)
Res
({

X3(k, 0)← α
})

` f (α) < k, f (α) = k

(1)

(1)

` f (α) < k, f (α) = k

(δ2, n,m,w, k, p(p(r)), 0)

` f (α) < k, F̂5(α, X̄, k, 0)
BF̂5r

` f (α) < k, f (Ŝ(0, α)) 6= k
BŜr` f (α) < k, f (α) 6= k

¬ : r
f (α) = k ` f (α) < k

Res(∅)
` f (α) < k

(δ1, n,m,w, k, r, 0)
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Conclusion & Future work

I The formalism presented above can be used for finite
representation of the resolution refutation need for proof
analysis using CERES.

I Additionally, we can imagine a reverse resolution calculus
I Given an unsatisfiable recursive clause set does there exists a

refutation of the clause set using the given Call Graph.

This is currently being investigated.
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Thank you for your time.
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