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Motivating example

- A colleague often mentions the following problem as a
canonical “difficult” problem for inductive theorem provers.
x+0=x
x+s(y) =s(x+y)
x4+ (x+x) = (x+ x) + x
Why is it hard? Easy, it requires “hard to find” lemmata.
- But what does this tell us about theorem provers which
a) find the required lemmata? ( Like Viper [Eberhard & Hetzl ,
2015], [Ebner & Hetzl , 2015])
b) do not find the required lemmata? (Everything else?)

What we want to know is what to expect from a given prover.

Essentially, complexity measures for inductive theorem prover.

Unexpectedly we start from the analysis of recursively defined
formal proofs.
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Proof Schema: a.k.a Yet Another Formalism of Induction

- A schema of proofs was used to analyze Fiirstenberg's proof
of the infinitude of primes [Baaz et al. 2008].

- Proof Schema are a formal description of this concept.

- More precisely, they are recursively defined infinite sequence of
finite proofs indexed by a vector of free numeric parameters,
which when grounded and normalized produce a first-order
proof.

- Links between proofs define the recursive construction.

- Recent work [ Cerna & Lolic , 2018], has shown equivalence
to Peano Arithmetic.
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Mechanism behind Schematic Proofs

- Proof Schemata interpret arithmetic induction as a primitive
recursive proof definition.
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Mechanism behind Schematic Proofs

- Proof Schemata interpret arithmetic induction as a primitive

recursive proof definition.

Y+ P(0),A IL, P(a) - P(s(o)), T
II, Y + Pi3), AT
P(s(a))

— The proof is indexed by «.

— Instantiating « results in an LK-proof .

— Formally a proof pair {¢(0), ¢(n + 1)).
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Proof Schema: by comparison

- Unlike formal systems using so called w-rules, the recursive
construction is an explicit part of the object language.

- In contrast to cyclic proof formalisms, proofs are not by
infinite descent, i.e. they do not unroll into regular infinite
proof trees.

- Informally, one can think of proof schemata as a sequence of
proofs converging to a regular infinite proof tree.

- The formalism allows easy tracking of formula occurrences.

- Occurrence tracking is essential for schematic cut-elimination.
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Global versus Local cut-elimination

Local cut-elimination reduces a cut formula’'s complexity or its
distance from the leaves.

- Introduced by Gentzen as a method of proving consistency, the
concept has been expanded well beyond the intended scope.
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Global versus Local cut-elimination

Local cut-elimination reduces a cut formula’'s complexity or its
distance from the leaves.

- Introduced by Gentzen as a method of proving consistency, the
concept has been expanded well beyond the intended scope.

Global cut-elimination produces an intermediate representation
of a formal proofs cut-structure.

- From this intermediate representation a new proof with a
trivial cut-structure is produced.

slide 6/35
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CERES: The Characteristic Clause Set representation

CL(AFA)={-A}
CL(AFA)={AF}
CL(A-A)={AFA}
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- Construct a clause set from the cut ancestors relation.

- Such a clause set is always unsatisfiable.
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Local Cut-elimination and Recursion

- Essentially cut reduction fails once it reaches a link (recursive

call).
Jent®) o (e thX)
C,AFT AR, C
AN, cut

- For related formalisms cuts are eliminated from an infinite
proof tree.

- One can define a relation between proof schema extending
local cut-elimination and providing a sort of “cut-elimination’
through clausal subsumption [Cerna & Lettmann 2017].
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Clausal analysis: Reductive C.E. and Global Cut Structure

- Baaz and Leitsch, 2006 show how locally reducing cuts
impacts the global cut structure.

- Every proof can be transformed into a proof with a
minimally complex cut structure.

- The extracted clause set, is subsumed by the clause sets of
the more complex cut structure.

Reduction can result in
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- Baaz and Leitsch, 2006 show how locally reducing cuts
impacts the global cut structure.

- Every proof can be transformed into a proof with a
minimally complex cut structure.

- The extracted clause set, is subsumed by the clause sets of
the more complex cut structure.

e Local elimination

can result in a multi-
plication of the cuts

e  Essentially, the
cut-structure gets
more redundant.

e Redundancy =

structural  simplic-

Reduction can result in the following proof. ity.
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The Structurally Simplest Clause set

- What does this structural simplicity get you in the end?

- Consider the following:
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A Recursive Refutation

- Huge but easy to refute.

- Quantifier instantiation is still hard, i.e. avoided the
“hard problem”.

F A, P(3), P(4) - F A, P(3) - P(4) F A, R(3), P(4) F P(3) F A - P(3), P(4)
A, P(3) - A, R(3) - P(3)
A, R(3) F

As one might imagine to refute A, R(3) - we need a
derivation using
A+ R(3), P(3), P(4)
A+ R(3),P(3)

- Similar to the construction of a semantic tree.
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Global Cut-elimination and Proof Schema

- Recursive clausal analysis provides insight into the structure of
proof schema.

- But it's too close for comfort to the infinite constructions of
other formalisms

- Also, formula occurrence tracking is loss.

- In [ Leitsch et al., 2017] a solution is provided preserving the
occurrence tracking mechanism.

- Why not transform the Cut Structure into a Inductive
Definition of an unsatisfiable NNF formula definition?

- Such formula are well studied for first-order theorem proving.
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A Normal Form

%
b1 PPt )
o FEAR F,.. Farba Wil
A F M. F.FA (cut + )
| F . F.lA (cut +c7)
(0%
FEAF,

: (cut + c*)

r=A
- The cut structure is turned into a recursively defined formula

based on subformula occurance (BLUE).
- The schema itself is transformed into a schema with the cut
structure as a formula in the consequent (RED).

- The formula is ¥; and unsatisfiable. The sequence Fq,..., F,
contain the term tuples of a Schematic Herbrand Sequent.

- Quantifier instantiations.
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How to deal with F

- F is an inductive definition of an unsatisfiable ¥; formula
indexed by a single free parameter, say n.

- We can instantiate n by an arbitrary natural number and get
an instance, a first-order formula.

- Pick your favorite theorem prover and you can (possibly) get a
refutation in no time.

- This is what was done in [Cerna & Leitsch, 2016] for the
following theorem:
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Eventually Constant Assertion (ECA)

Theorem

Let ne N and f, : N — {0,---,n} be a total monotonically
decreasing function. Then there exists an x € N such that for all
y € N, where x < y, it is the case that f(x) = f(y).

Proof.
Trivial, but we can make it =are= weird by using the following cut
formula

Iy (x<y)—=n+1=1f(y))Vfi(y)<n+1)
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ECA: Cut Structure Inductive Definition

?(0) =x(x < x) AVx(x < g(x))A
Vx(0 # £(x) V0 # f(g(x))) v f(x) = f(g(x))A
Vx(f(x) # f(g(x))) AVx(f(x) £ 0) AVx(f(h(x)) £ 0)
¢(s(n)) =Vx(x < x) AVx(x < g(x)) AVx(F(x) # F(g(x))) A d(n)A
Vx(s(n) # f(x) vV s(n) # f(g(x))) vV f(x) = f(g(x)))A
UxVy(x £y V£(x) £ s(n)Vn=~f(y)Vf(y)<n)

(0= F(x)) AVx(f(x) # f(g(x)))A
Vx(f(x) = f(g(x)) v 0 = f(x))
Q(s(n)) ==9x(f(x) < s(n) v s(n) = £(x)) A ¢(s(n))

- Using Vampire and SPASS to produce the first 5 instances we

found a refutation of the above inductive definition.
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ECA: The Refutation

(m+1,1)
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ECA: Recursion

Next{n, g(z))
Next(n, g'(z))

fink Eln. {g(z))) v LE(Hg(z).n)
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ECA: Exponential Growth
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Viper And The ECA

- Given Viper's efficacy concerning (x + x) + x = x + (x + x)
one would expect ECA to be much easier.

- Five days later... Viper was still working.

- ECA is easy from a first order point of view, Vampire and
SPASS can handle instances as high as 10 in roughly a 1
second and higher given more time.

- What is hard about ECA? It is a simplification of the following
statement

Theorem (Non-Injectivity Assertion (NIA)

Let ne N and f, : N — {0,--- ,n} be a total function. Then there
exists an x,y € N, where x < y, s.t. f(x) = f(y).

Proof.
Variant of the infinitary Pigeonhole Principle O
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NIA: Inductive Definition of Cut Structure

R(s(n)) = vx(x <x) A T(s(n)) A vx( Q(s(n),x))

A
Vx,y(=(s(y) <x A f(y)=0A
R(0) = f(x) =0)) A Vx(x<x)A
)

T(s(n) Vx,y,z(m(x,y) <z = x<z)A
Vx,y,z( m(x,y) <z = y<z)A
VX(,);(S()/) £ x V f(y) #s(n) Vv f(x) # s(n))) A
T(n

(
Q(s(n),a) = f(a) =s(n) VvV Q(n, a)
Q(0,a) = f(a)=0
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- Refutation

- Constructing a formal refutation of VxR(n, x) |- is quite
difficult.

- Remember, the Infinitrary pigeonhole principle is /35.

- In recent work [ D. M. Cerna, 2018], currently in review,
introduced a formal system, which seems to be complete with
respect to certain restrictions of schematic proof analysis (still
an open question), which can formalize VxR(n, x) .

- The following diagram represents the linking dependencies of
the formal proof.
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Refutation Link Dependences

P4, Pe

P5
P2

start — Ps

b7, P9

P9, P10

slide 23/35



Other than Viper...

» The work [ Leitsch et al. , 2017] is dependent on a
superposition schematic prover introduced by [ Aravantinos
et al. , 2013].

» Viper takes a novel path towards invariant discovery by
constructing tree grammars.

» Aravantinos et al. took a more traditional path (though in a
novel way) of looking for loop invariants.

» So far our inductive definitions are hard for both, furthermore,
the NIA schema is hard for first-order provers too.

» Maybe we simplified the NIA schema the wrong way.

slide 24/35



A Way Out, 1-Strict Monotone Assertion (1-SMA)

Definition

a total function f : A — B is k-strict monotone decreasing if there
exists a set of A’ C A, whose cardinality is k, s.t. if x € A’ then
f(x)="f(x+1),and if x € A\ A then f(x) < f(x+1).

- If A=Nand B={0,---,n}, then we can pose the following
theorem

Theorem
Iff:N—{0,---,n} is a total monotone decreasing function,
then f is at least 1-strict monotone decreasing.

Proof.

Can be proven using a sequence of Aj cuts. O
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1-SMA: Inductive Definition of the Cut Structure

Top(0)

Top(n+1)

Next(0)

Next(n+ 1)
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1-SMA: Important Properties

- Unlike the previous examples VnTop(n) I has a single proof
(modulo structural changes)!

- This was shown in [ D. M. Cerna, 2018]
- Viper can prove this statement in roughly 5 hours

- The superposition prover [ Aravantinos et al. , 2013] cannot
on theoretic grounds.

- Every quantifier of Top(n) needs to be instantiated by a
number of terms dependent on n, a simple diagonalization
argument shows that we leave LOOP; programs, i.e. their
loop discovery mechanism.
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1-SMA: Hardness

» To refute ECA’s inductive definition one needs the following
instances of Vx(f(x) < s(n) V s(n) = f(x))

f(0) <s(n) v s(n) = £(0) f(g(0)) <s(n)V s(n) = £(g(0))

» To refute 1-SMA's inductive definition for instance five one
needs six instances of Vx(f(x) < s®(0) V s°(0) = f(x))

£(0) < s°(0) v s°(0) = £(0) £(S(0)) < s°(0) v s°(0) = £(S(0))
£(S%(0)) < s°(0) v s°(0) = £(S%(0)) £(S%(0)) < s°(0) v s°(0) = £(S%(0))
£(5*(0)) < s°(0) v s°(0) = £(5*(0)) £(s%(0)) < s°(0) v s°(0) = £(S°(0))

- Like the Infinitary Pigeonhole Principle, 1-SMA captures some
fundamental combinatorial complexity.

- We can exploit this and define a complexity based on it. But
before doing so, we can ask if 1-SMA is alone?
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Scalar

1-SMA & Matrix 1-SMA

By manipulating the proof in such a way that the clause
Vx((—=(n+1) = f(x)) V(—~(n+1) = f(S(x)))) changes we
can get stronger or weaker statements.

Scalar 1-SMA contains the clause Vx((—=(n+ 1) = f(x)))
instead. Every quantifier is instantiated by a single term.
Matrix 1-SMA contains the clause

Vx((=(n+1) = f(x)) V-V (=(n+ 1) = £(S5(x))))

where k is a second free parameter. Every quantifier is
instantiated by n - k terms.

There is no need to stop here, we can make an 1-SMA
statement such that every quantifier is instantiated by [ n
terms where n; are the free parameters.

We conjecture (perhaps unsurprisingly) that the limit of the
1-SMA hierarchy is precisely the NIA schema which requires
Every quantifier to be instantiated by at least n” terms.
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Complexity Measure

>

To define the measure we need a way to relate clauses derived
from different instances of an NNF formula's inductive
definition.

We want to define complexity in terms of the number of
instantiations of related clauses necessary for refuting the
instance of the inductive definition.

We say an inductive definition of a NNF formula F over

parameters ng, - - , Ny is O(f(ng,- -+, nm))-unsat if all clauses
and there relatives require at most O(f(to,--- ,tm)) quantifier
instantiation when refuting C {ng < to, -, Nm < tm}

scalar 1-SMA is O(1)-unsat, 1-SMA is O(n)-unsat, matrix
1-SMA O(n - k)-unsat, ECA is O(2")-unsat and NIA is
O(n")-unsat.

But, ECA is some what special.
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Recursively Unsatisfiable

> If we only focus on the clauses of ECA’s inductive definition
indexed by n,---,n— k for some constant k, notice that all
these clauses are instantiated a constant number of times.

> In some sense ECA is recursive O(1)-unsat, i.e. it is
surprisingly easy when you find out that an exponential
function is needed for term construction.

» This observation points towards a secondary hierarchy
dependent on recursive constructions in some sense simpler
than the non-recursive hierarchy.

» This secondary hierarchy points towards problems which might
be susceptible to methods of automated theorem proving.
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Conclusions & future work

> Essentially loop discovery methods can easily get stuck below
O(n)-unsat because they would need to discover a loop in a
loop!

» This complexity measure discussed above seems to capture
Vipers abilities quite well.

» The method is limited to tree grammars with an exponential
language and Viper suffered while attempting to prove ECA.

> Interesting question is how would a tree grammar based
prover handle classes O(n*)-unsat for a constant k?

» Future work is for the most part development and further
formalization of the concepts.
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Thank you for your time.
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