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Motivating example

- A colleague often mentions the following problem as a
canonical “difficult” problem for inductive theorem provers.

x + 0 = x
x + s(y) = s(x + y)
x + (x + x) = (x + x) + x

- Why is it hard? Easy, it requires “hard to find” lemmata.

- But what does this tell us about theorem provers which

a) find the required lemmata? ( Like Viper [Eberhard & Hetzl ,
2015], [Ebner & Hetzl , 2015])

b) do not find the required lemmata? (Everything else?)

- What we want to know is what to expect from a given prover.

- Essentially, complexity measures for inductive theorem prover.

- Unexpectedly we start from the analysis of recursively defined
formal proofs.
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Proof Schema: a.k.a Yet Another Formalism of Induction

- A schema of proofs was used to analyze Fürstenberg’s proof
of the infinitude of primes [Baaz et al. 2008].

- Proof Schema are a formal description of this concept.

- More precisely, they are recursively defined infinite sequence of
finite proofs indexed by a vector of free numeric parameters,
which when grounded and normalized produce a first-order
proof.

- Links between proofs define the recursive construction.

- Recent work [ Cerna & Lolic , 2018], has shown equivalence
to Peano Arithmetic.
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Mechanism behind Schematic Proofs

- Proof Schemata interpret arithmetic induction as a primitive
recursive proof definition.

⇒

⇓

⇓ α−2 times

− The proof is indexed by α.

− Instantiating α results in an LK-proof .

− Formally a proof pair 〈ϕ(0), ϕ(n + 1)〉.
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Proof Schema: by comparison

- Unlike formal systems using so called ω-rules, the recursive
construction is an explicit part of the object language.

- In contrast to cyclic proof formalisms, proofs are not by
infinite descent, i.e. they do not unroll into regular infinite
proof trees.

- Informally, one can think of proof schemata as a sequence of
proofs converging to a regular infinite proof tree.

- The formalism allows easy tracking of formula occurrences.

- Occurrence tracking is essential for schematic cut-elimination.
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Global versus Local cut-elimination

Local cut-elimination reduces a cut formula’s complexity or its
distance from the leaves.

- Introduced by Gentzen as a method of proving consistency, the
concept has been expanded well beyond the intended scope.

Global cut-elimination produces an intermediate representation
of a formal proofs cut-structure.

- From this intermediate representation a new proof with a
trivial cut-structure is produced.
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CERES: The Characteristic Clause Set representation

cut 

∆`Π

LK-Proof with cuts

cut 

Paths to cut ancestors

CL(A`A)≡{`A}
CL(A`A)≡{A`}
CL(A`A)≡{A`A}

CL

(
∆ ` Π ρ

∆′ ` Π′

)
≡ CL(∆ ` Π)

CL

(
∆ ` Π ∆′ ` Π′

ρ
∆′′ ` Π′′

)
≡

 CL(∆ ` Π) ∪ CL(∆′ ` Π′)

CL(∆ ` Π)× CL(∆′ ` Π′)

- Construct a clause set from the cut ancestors relation.

- Such a clause set is always unsatisfiable.
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Local Cut-elimination and Recursion

- Essentially cut reduction fails once it reaches a link (recursive
call).

(ϕl , t, x̄)

C ,∆ ` Γ

(ϕj , t
′, x̄)

∆′ ` Γ′,C
cut

∆,∆′ ` Γ, Γ′

- For related formalisms cuts are eliminated from an infinite
proof tree.

- One can define a relation between proof schema extending
local cut-elimination and providing a sort of “cut-elimination”
through clausal subsumption [Cerna & Lettmann 2017].
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Clausal analysis: Reductive C.E. and Global Cut Structure

- Baaz and Leitsch, 2006 show how locally reducing cuts
impacts the global cut structure.

- Every proof can be transformed into a proof with a
minimally complex cut structure.

- The extracted clause set, is subsumed by the clause sets of
the more complex cut structure.

cut 

∆`Π

Reduction can result in

cutcut

p

the following proof.

• Local elimination

can result in a multi-

plication of the cuts

• Essentially, the

cut-structure gets

more redundant.

• Redundancy ≡
structural simplic-

ity.
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The Structurally Simplest Clause set

- What does this structural simplicity get you in the end?

- Consider the following:

` P(1)

` P(2)

P(2) ` P(3)

P(2) ` P(4)

P(1),Q(2),Q(1) `
P(1), R(2), R(1) `
P(4),Q(3),Q(1) `
P(4), R(3), R(1) `
P(3),Q(3),Q(2) `
P(3), R(3), R(2) `

` Q(1), R(1)

` Q(2), R(2)

` Q(3), R(3)

Clause Set

Q(1), R(1), P(1),Q(2), R(2), P(2),Q(3), R(3), P(3), P(4) `
Q(1), R(1), P(1),Q(2), R(2), P(2),Q(3), R(3), P(3) ` P(4)

Q(1), R(1), P(1),Q(2), R(2), P(2),Q(3), R(3), P(4) ` P(3)

Q(1), R(1), P(1),Q(2), R(2), P(2),Q(3), R(3) ` P(3), P(4)

Q(1), R(1), P(1),Q(2), R(2), P(2),Q(3), P(3), P(4) ` R(3)

Q(1), R(1), P(1),Q(2), R(2), P(2),Q(3), P(3) ` R(3), P(4)

R(3), P(4) ` Q(1), R(1), P(1),Q(2), R(2), P(2),Q(3), P(3)

R(3) ` Q(1), R(1), P(1),Q(2), R(2), P(2),Q(3), P(3), P(4)

P(3), P(4) ` Q(1), R(1), P(1),Q(2), R(2), P(2),Q(3), R(3)

P(3) ` Q(1), R(1), P(1),Q(2), R(2), P(2),Q(3), R(3), P(4)

P(4) ` Q(1), R(1), P(1),Q(2), R(2), P(2),Q(3), R(3), P(3)

` Q(1), R(1), P(1),Q(2), R(2), P(2),Q(3), R(3), P(3), P(4)

Top Clause Set

HA
S
10
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A Recursive Refutation

- Huge but easy to refute.

- Quantifier instantiation is still hard, i.e. avoided the
“hard problem”.

` ∆, P(3), P(4) ` ` ∆, P(3) ` P(4)

∆, P(3) `

` ∆, R(3), P(4) ` P(3) ` ∆ ` P(3), P(4)

∆, R(3) ` P(3)

∆, R(3) `
.
.
.

- As one might imagine to refute ∆,R(3) ` we need a
derivation using

∆ ` R(3),P(3),P(4)
∆ ` R(3),P(3)

- Similar to the construction of a semantic tree.
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Global Cut-elimination and Proof Schema

- Recursive clausal analysis provides insight into the structure of
proof schema.

- But it’s too close for comfort to the infinite constructions of
other formalisms

- Also, formula occurrence tracking is loss.

- In [ Leitsch et al., 2017] a solution is provided preserving the
occurrence tracking mechanism.

- Why not transform the Cut Structure into a Inductive
Definition of an unsatisfiable NNF formula definition?

- Such formula are well studied for first-order theorem proving.
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A Normal Form

φα
Γ ` ∆,Fα

φ2

Γ ` ∆,F2

φ1

Γ ` ∆,F1

Φ
F1, . . . ,Fα ` (w : l)

F1, . . . ,Fα, Γ ` ∆
(cut + c∗)

Γ,F2, . . . ,Fα ` ∆
(cut + c∗)

Γ,F3, . . . ,Fα ` ∆
...

(cut + c∗)
Γ ` ∆

- The cut structure is turned into a recursively defined formula
based on subformula occurance (BLUE).

- The schema itself is transformed into a schema with the cut
structure as a formula in the consequent (RED).

- The formula is Σ1 and unsatisfiable. The sequence F1, . . . ,Fα
contain the term tuples of a Schematic Herbrand Sequent.

- Quantifier instantiations.
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How to deal with F

- F is an inductive definition of an unsatisfiable Σ1 formula
indexed by a single free parameter, say n.

- We can instantiate n by an arbitrary natural number and get
an instance, a first-order formula.

- Pick your favorite theorem prover and you can (possibly) get a
refutation in no time.

- This is what was done in [Cerna & Leitsch, 2016] for the
following theorem:
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Eventually Constant Assertion (ECA)

Theorem
Let n ∈ N and fn : N→ {0, · · · , n} be a total monotonically
decreasing function. Then there exists an x ∈ N such that for all
y ∈ N, where x ≤ y , it is the case that f (x) = f (y).

Proof.
Trivial, but we can make it hard weird by using the following cut
formula

∃x∀y (((x ≤ y)→ n + 1 = f (y)) ∨ f (y) < n + 1)
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ECA: Cut Structure Inductive Definition

φ(0) =⇒∀x(x ≤ x) ∧ ∀x(x ≤ g(x))∧
∀x(0 6= f (x) ∨ 0 6= f (g(x))) ∨ f (x) = f (g(x)))∧
∀x(f (x) 6= f (g(x))) ∧ ∀x(f (x) 6< 0) ∧ ∀x(f (h(x)) 6< 0)

φ(s(n)) =⇒∀x(x ≤ x) ∧ ∀x(x ≤ g(x)) ∧ ∀x(f (x) 6= f (g(x))) ∧ φ(n)∧
∀x(s(n) 6= f (x) ∨ s(n) 6= f (g(x))) ∨ f (x) = f (g(x)))∧
∀x∀y(x 6≤ y ∨ f (x) 6< s(n) ∨ n = f (y) ∨ f (y) < n)

Ω(0) =⇒∀x(0 = f (x)) ∧ ∀x(f (x) 6= f (g(x)))∧
∀x(f (x) = f (g(x)) ∨ 0 = f (x))

Ω(s(n)) =⇒∀x(f (x) < s(n) ∨ s(n) = f (x)) ∧ φ(s(n))

- Using Vampire and SPASS to produce the first 5 instances we
found a refutation of the above inductive definition.
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ECA: The Refutation
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ECA: Recursion
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ECA: Exponential Growth
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Viper And The ECA

- Given Viper’s efficacy concerning (x + x) + x = x + (x + x)
one would expect ECA to be much easier.

- Five days later... Viper was still working.

- ECA is easy from a first order point of view, Vampire and
SPASS can handle instances as high as 10 in roughly a 1
second and higher given more time.

- What is hard about ECA? It is a simplification of the following
statement

Theorem (Non-Injectivity Assertion (NIA)

Let n ∈ N and fn : N→ {0, · · · , n} be a total function. Then there
exists an x , y ∈ N, where x < y , s.t. f (x) = f (y).

Proof.
Variant of the infinitary Pigeonhole Principle
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NIA: Inductive Definition of Cut Structure

R(s(n)) =⇒ ∀x( x ≤ x ) ∧ T (s(n)) ∧ ∀x( Q(s(n), x) )

R(0) =⇒
∀x , y(¬(s(y) ≤ x ∧ f (y) = 0 ∧
f (x) = 0)) ∧ ∀x( x ≤ x )∧
∀x(f (x) = 0)

T (s(n)) =⇒ ∀x , y , z( m(x , y) ≤ z =⇒ x ≤ z ) ∧
∀x , y , z( m(x , y) ≤ z =⇒ y ≤ z ) ∧
∀x , y(s(y) 6≤ x ∨ f (y) 6= s(n) ∨ f (x) 6= s(n))) ∧
T (n)

T (0) =⇒ ∀x , y(¬(s(y) ≤ x ∧ f (y) = 0 ∧ f (x) = 0))

Q(s(n), a) =⇒ f (a) = s(n) ∨ Q(n, a)

Q(0, a) =⇒ f (a) = 0
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NIA: Refutation

- Constructing a formal refutation of ∀xR(n, x) ` is quite
difficult.

- Remember, the Infinitrary pigeonhole principle is IΣ2.

- In recent work [ D. M. Cerna, 2018], currently in review,
introduced a formal system, which seems to be complete with
respect to certain restrictions of schematic proof analysis (still
an open question), which can formalize ∀xR(n, x) `.

- The following diagram represents the linking dependencies of
the formal proof.

slide 22/35



Refutation Link Dependences

C1start

C2

C4

C3

p2

p4, p6

p5

p7, p9

p6
p8

p9, p10
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Other than Viper...

I The work [ Leitsch et al. , 2017] is dependent on a
superposition schematic prover introduced by [ Aravantinos
et al. , 2013].

I Viper takes a novel path towards invariant discovery by
constructing tree grammars.

I Aravantinos et al. took a more traditional path (though in a
novel way) of looking for loop invariants.

I So far our inductive definitions are hard for both, furthermore,
the NIA schema is hard for first-order provers too.

I Maybe we simplified the NIA schema the wrong way.
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A Way Out, 1-Strict Monotone Assertion (1-SMA)

Definition
a total function f : A→ B is k-strict monotone decreasing if there
exists a set of A′ ⊂ A, whose cardinality is k , s.t. if x ∈ A′ then
f (x) = f (x + 1), and if x ∈ A \ A′ then f (x) < f (x + 1).

- If A = N and B = {0, · · · , n}, then we can pose the following
theorem

Theorem
If f : N→ {0, · · · , n} is a total monotone decreasing function,
then f is at least 1-strict monotone decreasing.

Proof.
Can be proven using a sequence of ∆2 cuts.
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1-SMA: Inductive Definition of the Cut Structure

Top(0) = Next(0) ∧ (0 = f (0) ∨ 0 = f (S(0)))

Top(n + 1) = ∀x((n + 1) = f (S(x)) ∨ f (x) < (n + 1)) ∧
∀x((n + 1) = f (x) ∨ f (x) < (n + 1)) ∧ Next(n + 1)

Next(0) = (¬f (0) < 0) ∧ ∀x((¬0 = f (x)) ∨ (¬0 = f (S(x))))

Next(n + 1) = ∀x((¬(n + 1) = f (x)) ∨ (¬(n + 1) = f (S(x)))) ∧
∀x((¬f (x) < (n + 1)) ∨ n = f (x) ∨ f (x) < n) ∧
∀x((¬f (S(x)) < (n + 1)) ∨ n = f (S(x)) ∨ f (x) < n)

∧Next(n)
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1-SMA: Important Properties

- Unlike the previous examples ∀nTop(n) ` has a single proof
(modulo structural changes)!

- This was shown in [ D. M. Cerna, 2018]

- Viper can prove this statement in roughly 5 hours

- The superposition prover [ Aravantinos et al. , 2013] cannot
on theoretic grounds.

- Every quantifier of Top(n) needs to be instantiated by a
number of terms dependent on n, a simple diagonalization
argument shows that we leave LOOP1 programs, i.e. their
loop discovery mechanism.

slide 27/35



1-SMA: Proof & Refutation
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1-SMA: Hardness

I To refute ECA’s inductive definition one needs the following
instances of ∀x(f (x) < s(n) ∨ s(n) = f (x))

f (0) < s(n) ∨ s(n) = f (0) f (g(0)) < s(n) ∨ s(n) = f (g(0))

I To refute 1-SMA’s inductive definition for instance five one
needs six instances of ∀x(f (x) < s5(0) ∨ s5(0) = f (x))

f (0) < s5(0) ∨ s5(0) = f (0) f (S(0)) < s5(0) ∨ s5(0) = f (S(0))

f (S2(0)) < s5(0) ∨ s5(0) = f (S2(0)) f (S3(0)) < s5(0) ∨ s5(0) = f (S3(0))

f (S4(0)) < s5(0) ∨ s5(0) = f (S4(0)) f (S5(0)) < s5(0) ∨ s5(0) = f (S5(0))

- Like the Infinitary Pigeonhole Principle, 1-SMA captures some
fundamental combinatorial complexity.

- We can exploit this and define a complexity based on it. But
before doing so, we can ask if 1-SMA is alone?
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Scalar 1-SMA & Matrix 1-SMA

I By manipulating the proof in such a way that the clause
∀x((¬(n + 1) = f (x)) ∨ (¬(n + 1) = f (S(x)))) changes we
can get stronger or weaker statements.

I Scalar 1-SMA contains the clause ∀x((¬(n + 1) = f (x)))
instead. Every quantifier is instantiated by a single term.

I Matrix 1-SMA contains the clause

∀x((¬(n + 1) = f (x)) ∨ · · · ∨ (¬(n + 1) = f (Sk(x))))

where k is a second free parameter. Every quantifier is
instantiated by n · k terms.

I There is no need to stop here, we can make an 1-SMA
statement such that every quantifier is instantiated by

∏m
i=0 ni

terms where ni are the free parameters.
I We conjecture (perhaps unsurprisingly) that the limit of the

1-SMA hierarchy is precisely the NIA schema which requires
Every quantifier to be instantiated by at least nn terms.
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Matrix 1-SMA: proof
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Complexity Measure

I To define the measure we need a way to relate clauses derived
from different instances of an NNF formula’s inductive
definition.

I We want to define complexity in terms of the number of
instantiations of related clauses necessary for refuting the
instance of the inductive definition.

I We say an inductive definition of a NNF formula F over
parameters n0, · · · , nm is O(f (n0, · · · , nm))-unsat if all clauses
and there relatives require at most O(f (t0, · · · , tm)) quantifier
instantiation when refuting C {n0 ← t0, · · · , nm ← tm}

I scalar 1-SMA is O(1)-unsat, 1-SMA is O(n)-unsat, matrix
1-SMA O(n · k)-unsat, ECA is O(2n)-unsat and NIA is
O(nn)-unsat.

I But, ECA is some what special.
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Recursively Unsatisfiable

I If we only focus on the clauses of ECA’s inductive definition
indexed by n, · · · , n − k for some constant k, notice that all
these clauses are instantiated a constant number of times.

I In some sense ECA is recursive O(1)-unsat, i.e. it is
surprisingly easy when you find out that an exponential
function is needed for term construction.

I This observation points towards a secondary hierarchy
dependent on recursive constructions in some sense simpler
than the non-recursive hierarchy.

I This secondary hierarchy points towards problems which might
be susceptible to methods of automated theorem proving.
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Conclusions & future work

I Essentially loop discovery methods can easily get stuck below
O(n)-unsat because they would need to discover a loop in a
loop!

I This complexity measure discussed above seems to capture
Vipers abilities quite well.

I The method is limited to tree grammars with an exponential
language and Viper suffered while attempting to prove ECA.

I Interesting question is how would a tree grammar based
prover handle classes O(nk)-unsat for a constant k?

I Future work is for the most part development and further
formalization of the concepts.
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Thank you for your time.
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